import os import sys import typing from dotenv import load_dotenv from tools.contacts import get_all_contacts from tools.vocode import call_phone_number from tools.get_user_inputs import get_desired_inputs from tools.email_tool import email_tasks from langchain.memory import ConversationBufferMemory from langchain.agents import load_tools from stdout_filterer import RedactPhoneNumbers load_dotenv() from langchain.chat_models import ChatOpenAI from langchain.chat_models import BedrockChat from langchain.agents import initialize_agent from langchain.agents import AgentType if __name__ == "__main__": # Redirect stdout to our custom class sys.stdout = typing.cast(typing.TextIO, RedactPhoneNumbers(sys.stdout)) OBJECTIVE = ( input("Objective: ") + "make sure you use the proper tool before calling final action to meet objective, feel free to say you need more information or cannot do something." or "Find a random person in my contacts and tell them a joke" ) #llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") # type: ignore llm = BedrockChat(model_id="anthropic.claude-instant-v1", model_kwargs={"temperature":0}) # type: ignore memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) # Logging of LLMChains verbose = True agent = initialize_agent( tools=[get_all_contacts, call_phone_number, email_tasks] + load_tools(["serpapi", "human"]), llm=llm, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=verbose, memory=memory, ) agent.run(OBJECTIVE)