import os import subprocess import sys from time import sleep from pymol import cmd class PyMOLVisualizer: def __init__(self, plcomplex): if plcomplex is not None: self.plcomplex = plcomplex self.protname = plcomplex.pdbid # Name of protein with binding site self.hetid = plcomplex.hetid self.ligandtype = plcomplex.ligandtype self.ligname = "Ligand_" + self.hetid # Name of ligand self.metal_ids = plcomplex.metal_ids def set_initial_representations(self): """General settings for PyMOL""" self.standard_settings() cmd.set('dash_gap', 0) # Show not dashes, but lines for the pliprofiler cmd.set('ray_shadow', 0) # Turn on ray shadows for clearer ray-traced images cmd.set('cartoon_color', 'mylightblue') # Set clipping planes for full view cmd.clip('far', -1000) cmd.clip('near', 1000) def make_initial_selections(self): """Make empty selections for structures and interactions""" for group in ['Hydrophobic-P', 'Hydrophobic-L', 'HBondDonor-P', 'HBondDonor-L', 'HBondAccept-P', 'HBondAccept-L', 'HalogenAccept', 'HalogenDonor', 'Water', 'MetalIons', 'StackRings-P', 'PosCharge-P', 'PosCharge-L', 'NegCharge-P', 'NegCharge-L', 'PiCatRing-P', 'StackRings-L', 'PiCatRing-L', 'Metal-M', 'Metal-P', 'Metal-W', 'Metal-L', 'Unpaired-HBA', 'Unpaired-HBD', 'Unpaired-HAL', 'Unpaired-RINGS']: cmd.select(group, 'None') def standard_settings(self): """Sets up standard settings for a nice visualization.""" cmd.set('bg_rgb', [1.0, 1.0, 1.0]) # White background cmd.set('depth_cue', 0) # Turn off depth cueing (no fog) cmd.set('cartoon_side_chain_helper', 1) # Improve combined visualization of sticks and cartoon cmd.set('cartoon_fancy_helices', 1) # Nicer visualization of helices (using tapered ends) cmd.set('transparency_mode', 1) # Turn on multilayer transparency cmd.set('dash_radius', 0.05) self.set_custom_colorset() def set_custom_colorset(self): """Defines a colorset with matching colors. Provided by Joachim.""" cmd.set_color('myorange', '[253, 174, 97]') cmd.set_color('mygreen', '[171, 221, 164]') cmd.set_color('myred', '[215, 25, 28]') cmd.set_color('myblue', '[43, 131, 186]') cmd.set_color('mylightblue', '[158, 202, 225]') cmd.set_color('mylightgreen', '[229, 245, 224]') def select_by_ids(self, selname, idlist, selection_exists=False, chunksize=20, restrict=None): """Selection with a large number of ids concatenated into a selection list can cause buffer overflow in PyMOL. This function takes a selection name and and list of IDs (list of integers) as input and makes a careful step-by-step selection (packages of 20 by default)""" idlist = list(set(idlist)) # Remove duplicates if not selection_exists: cmd.select(selname, 'None') # Empty selection first idchunks = [idlist[i:i + chunksize] for i in range(0, len(idlist), chunksize)] for idchunk in idchunks: cmd.select(selname, '%s or (id %s)' % (selname, '+'.join(map(str, idchunk)))) if restrict is not None: cmd.select(selname, '%s and %s' % (selname, restrict)) def object_exists(self, object_name): """Checks if an object exists in the open PyMOL session.""" return object_name in cmd.get_names("objects") def show_hydrophobic(self): """Visualizes hydrophobic contacts.""" hydroph = self.plcomplex.hydrophobic_contacts if not len(hydroph.bs_ids) == 0: self.select_by_ids('Hydrophobic-P', hydroph.bs_ids, restrict=self.protname) self.select_by_ids('Hydrophobic-L', hydroph.lig_ids, restrict=self.ligname) for i in hydroph.pairs_ids: cmd.select('tmp_bs', 'id %i & %s' % (i[0], self.protname)) cmd.select('tmp_lig', 'id %i & %s' % (i[1], self.ligname)) cmd.distance('Hydrophobic', 'tmp_bs', 'tmp_lig') if self.object_exists('Hydrophobic'): cmd.set('dash_gap', 0.5, 'Hydrophobic') cmd.set('dash_color', 'grey50', 'Hydrophobic') else: cmd.select('Hydrophobic-P', 'None') def show_hbonds(self): """Visualizes hydrogen bonds.""" hbonds = self.plcomplex.hbonds for group in [['HBondDonor-P', hbonds.prot_don_id], ['HBondAccept-P', hbonds.prot_acc_id]]: if not len(group[1]) == 0: self.select_by_ids(group[0], group[1], restrict=self.protname) for group in [['HBondDonor-L', hbonds.lig_don_id], ['HBondAccept-L', hbonds.lig_acc_id]]: if not len(group[1]) == 0: self.select_by_ids(group[0], group[1], restrict=self.ligname) for i in hbonds.ldon_id: cmd.select('tmp_bs', 'id %i & %s' % (i[0], self.protname)) cmd.select('tmp_lig', 'id %i & %s' % (i[1], self.ligname)) cmd.distance('HBonds', 'tmp_bs', 'tmp_lig') for i in hbonds.pdon_id: cmd.select('tmp_bs', 'id %i & %s' % (i[1], self.protname)) cmd.select('tmp_lig', 'id %i & %s' % (i[0], self.ligname)) cmd.distance('HBonds', 'tmp_bs', 'tmp_lig') if self.object_exists('HBonds'): cmd.set('dash_color', 'blue', 'HBonds') def show_halogen(self): """Visualize halogen bonds.""" halogen = self.plcomplex.halogen_bonds all_don_x, all_acc_o = [], [] for h in halogen: all_don_x.append(h.don_id) all_acc_o.append(h.acc_id) cmd.select('tmp_bs', 'id %i & %s' % (h.acc_id, self.protname)) cmd.select('tmp_lig', 'id %i & %s' % (h.don_id, self.ligname)) cmd.distance('HalogenBonds', 'tmp_bs', 'tmp_lig') if not len(all_acc_o) == 0: self.select_by_ids('HalogenAccept', all_acc_o, restrict=self.protname) self.select_by_ids('HalogenDonor', all_don_x, restrict=self.ligname) if self.object_exists('HalogenBonds'): cmd.set('dash_color', 'greencyan', 'HalogenBonds') def show_stacking(self): """Visualize pi-stacking interactions.""" stacks = self.plcomplex.pistacking for i, stack in enumerate(stacks): pires_ids = '+'.join(map(str, stack.proteinring_atoms)) pilig_ids = '+'.join(map(str, stack.ligandring_atoms)) cmd.select('StackRings-P', 'StackRings-P or (id %s & %s)' % (pires_ids, self.protname)) cmd.select('StackRings-L', 'StackRings-L or (id %s & %s)' % (pilig_ids, self.ligname)) cmd.select('StackRings-P', 'byres StackRings-P') cmd.show('sticks', 'StackRings-P') cmd.pseudoatom('ps-pistack-1-%i' % i, pos=stack.proteinring_center) cmd.pseudoatom('ps-pistack-2-%i' % i, pos=stack.ligandring_center) cmd.pseudoatom('Centroids-P', pos=stack.proteinring_center) cmd.pseudoatom('Centroids-L', pos=stack.ligandring_center) if stack.type == 'P': cmd.distance('PiStackingP', 'ps-pistack-1-%i' % i, 'ps-pistack-2-%i' % i) if stack.type == 'T': cmd.distance('PiStackingT', 'ps-pistack-1-%i' % i, 'ps-pistack-2-%i' % i) if self.object_exists('PiStackingP'): cmd.set('dash_color', 'green', 'PiStackingP') cmd.set('dash_gap', 0.3, 'PiStackingP') cmd.set('dash_length', 0.6, 'PiStackingP') if self.object_exists('PiStackingT'): cmd.set('dash_color', 'smudge', 'PiStackingT') cmd.set('dash_gap', 0.3, 'PiStackingT') cmd.set('dash_length', 0.6, 'PiStackingT') def show_cationpi(self): """Visualize cation-pi interactions.""" for i, p in enumerate(self.plcomplex.pication): cmd.pseudoatom('ps-picat-1-%i' % i, pos=p.ring_center) cmd.pseudoatom('ps-picat-2-%i' % i, pos=p.charge_center) if p.protcharged: cmd.pseudoatom('Chargecenter-P', pos=p.charge_center) cmd.pseudoatom('Centroids-L', pos=p.ring_center) pilig_ids = '+'.join(map(str, p.ring_atoms)) cmd.select('PiCatRing-L', 'PiCatRing-L or (id %s & %s)' % (pilig_ids, self.ligname)) for a in p.charge_atoms: cmd.select('PosCharge-P', 'PosCharge-P or (id %i & %s)' % (a, self.protname)) else: cmd.pseudoatom('Chargecenter-L', pos=p.charge_center) cmd.pseudoatom('Centroids-P', pos=p.ring_center) pires_ids = '+'.join(map(str, p.ring_atoms)) cmd.select('PiCatRing-P', 'PiCatRing-P or (id %s & %s)' % (pires_ids, self.protname)) for a in p.charge_atoms: cmd.select('PosCharge-L', 'PosCharge-L or (id %i & %s)' % (a, self.ligname)) cmd.distance('PiCation', 'ps-picat-1-%i' % i, 'ps-picat-2-%i' % i) if self.object_exists('PiCation'): cmd.set('dash_color', 'orange', 'PiCation') cmd.set('dash_gap', 0.3, 'PiCation') cmd.set('dash_length', 0.6, 'PiCation') def show_sbridges(self): """Visualize salt bridges.""" for i, saltb in enumerate(self.plcomplex.saltbridges): if saltb.protispos: for patom in saltb.positive_atoms: cmd.select('PosCharge-P', 'PosCharge-P or (id %i & %s)' % (patom, self.protname)) for latom in saltb.negative_atoms: cmd.select('NegCharge-L', 'NegCharge-L or (id %i & %s)' % (latom, self.ligname)) for sbgroup in [['ps-sbl-1-%i' % i, 'Chargecenter-P', saltb.positive_center], ['ps-sbl-2-%i' % i, 'Chargecenter-L', saltb.negative_center]]: cmd.pseudoatom(sbgroup[0], pos=sbgroup[2]) cmd.pseudoatom(sbgroup[1], pos=sbgroup[2]) cmd.distance('Saltbridges', 'ps-sbl-1-%i' % i, 'ps-sbl-2-%i' % i) else: for patom in saltb.negative_atoms: cmd.select('NegCharge-P', 'NegCharge-P or (id %i & %s)' % (patom, self.protname)) for latom in saltb.positive_atoms: cmd.select('PosCharge-L', 'PosCharge-L or (id %i & %s)' % (latom, self.ligname)) for sbgroup in [['ps-sbp-1-%i' % i, 'Chargecenter-P', saltb.negative_center], ['ps-sbp-2-%i' % i, 'Chargecenter-L', saltb.positive_center]]: cmd.pseudoatom(sbgroup[0], pos=sbgroup[2]) cmd.pseudoatom(sbgroup[1], pos=sbgroup[2]) cmd.distance('Saltbridges', 'ps-sbp-1-%i' % i, 'ps-sbp-2-%i' % i) if self.object_exists('Saltbridges'): cmd.set('dash_color', 'yellow', 'Saltbridges') cmd.set('dash_gap', 0.5, 'Saltbridges') def show_wbridges(self): """Visualize water bridges.""" for bridge in self.plcomplex.waterbridges: if bridge.protisdon: cmd.select('HBondDonor-P', 'HBondDonor-P or (id %i & %s)' % (bridge.don_id, self.protname)) cmd.select('HBondAccept-L', 'HBondAccept-L or (id %i & %s)' % (bridge.acc_id, self.ligname)) cmd.select('tmp_don', 'id %i & %s' % (bridge.don_id, self.protname)) cmd.select('tmp_acc', 'id %i & %s' % (bridge.acc_id, self.ligname)) else: cmd.select('HBondDonor-L', 'HBondDonor-L or (id %i & %s)' % (bridge.don_id, self.ligname)) cmd.select('HBondAccept-P', 'HBondAccept-P or (id %i & %s)' % (bridge.acc_id, self.protname)) cmd.select('tmp_don', 'id %i & %s' % (bridge.don_id, self.ligname)) cmd.select('tmp_acc', 'id %i & %s' % (bridge.acc_id, self.protname)) cmd.select('Water', 'Water or (id %i & resn HOH)' % bridge.water_id) cmd.select('tmp_water', 'id %i & resn HOH' % bridge.water_id) cmd.distance('WaterBridges', 'tmp_acc', 'tmp_water') cmd.distance('WaterBridges', 'tmp_don', 'tmp_water') if self.object_exists('WaterBridges'): cmd.set('dash_color', 'lightblue', 'WaterBridges') cmd.delete('tmp_water or tmp_acc or tmp_don') cmd.color('lightblue', 'Water') cmd.show('spheres', 'Water') def show_metal(self): """Visualize metal coordination.""" metal_complexes = self.plcomplex.metal_complexes if not len(metal_complexes) == 0: self.select_by_ids('Metal-M', self.metal_ids) for metal_complex in metal_complexes: cmd.select('tmp_m', 'id %i' % metal_complex.metal_id) cmd.select('tmp_t', 'id %i' % metal_complex.target_id) if metal_complex.location == 'water': cmd.select('Metal-W', 'Metal-W or id %s' % metal_complex.target_id) if metal_complex.location.startswith('protein'): cmd.select('tmp_t', 'tmp_t & %s' % self.protname) cmd.select('Metal-P', 'Metal-P or (id %s & %s)' % (metal_complex.target_id, self.protname)) if metal_complex.location == 'ligand': cmd.select('tmp_t', 'tmp_t & %s' % self.ligname) cmd.select('Metal-L', 'Metal-L or (id %s & %s)' % (metal_complex.target_id, self.ligname)) cmd.distance('MetalComplexes', 'tmp_m', 'tmp_t') cmd.delete('tmp_m or tmp_t') if self.object_exists('MetalComplexes'): cmd.set('dash_color', 'violetpurple', 'MetalComplexes') cmd.set('dash_gap', 0.5, 'MetalComplexes') # Show water molecules for metal complexes cmd.show('spheres', 'Metal-W') cmd.color('lightblue', 'Metal-W') def selections_cleanup(self): """Cleans up non-used selections""" if not len(self.plcomplex.unpaired_hba_idx) == 0: self.select_by_ids('Unpaired-HBA', self.plcomplex.unpaired_hba_idx, selection_exists=True) if not len(self.plcomplex.unpaired_hbd_idx) == 0: self.select_by_ids('Unpaired-HBD', self.plcomplex.unpaired_hbd_idx, selection_exists=True) if not len(self.plcomplex.unpaired_hal_idx) == 0: self.select_by_ids('Unpaired-HAL', self.plcomplex.unpaired_hal_idx, selection_exists=True) selections = cmd.get_names("selections") for selection in selections: try: empty = len(cmd.get_model(selection).atom) == 0 except: empty = True if empty: cmd.delete(selection) cmd.deselect() cmd.delete('tmp*') cmd.delete('ps-*') def selections_group(self): """Group all selections""" cmd.group('Structures', '%s %s %sCartoon' % (self.protname, self.ligname, self.protname)) cmd.group('Interactions', 'Hydrophobic HBonds HalogenBonds WaterBridges PiCation PiStackingP PiStackingT ' 'Saltbridges MetalComplexes') cmd.group('Atoms', '') cmd.group('Atoms.Protein', 'Hydrophobic-P HBondAccept-P HBondDonor-P HalogenAccept Centroids-P PiCatRing-P ' 'StackRings-P PosCharge-P NegCharge-P AllBSRes Chargecenter-P Metal-P') cmd.group('Atoms.Ligand', 'Hydrophobic-L HBondAccept-L HBondDonor-L HalogenDonor Centroids-L NegCharge-L ' 'PosCharge-L NegCharge-L ChargeCenter-L StackRings-L PiCatRing-L Metal-L Metal-M ' 'Unpaired-HBA Unpaired-HBD Unpaired-HAL Unpaired-RINGS') cmd.group('Atoms.Other', 'Water Metal-W') cmd.order('*', 'y') def additional_cleanup(self): """Cleanup of various representations""" cmd.remove('not alt ""+A') # Remove alternate conformations cmd.hide('labels', 'Interactions') # Hide labels of lines cmd.disable('%sCartoon' % self.protname) cmd.hide('everything', 'hydrogens') def zoom_to_ligand(self): """Zoom in too ligand and its interactions.""" cmd.center(self.ligname) cmd.orient(self.ligname) cmd.turn('x', 110) # If the ligand is aligned with the longest axis, aromatic rings are hidden if 'AllBSRes' in cmd.get_names("selections"): cmd.zoom('%s or AllBSRes' % self.ligname, 3) else: if self.object_exists(self.ligname): cmd.zoom(self.ligname, 3) cmd.origin(self.ligname) def save_session(self, outfolder, override=None): """Saves a PyMOL session file.""" filename = '%s_%s' % (self.protname.upper(), "_".join( [self.hetid, self.plcomplex.chain, self.plcomplex.position])) if override is not None: filename = override cmd.save("/".join([outfolder, "%s.pse" % filename])) def png_workaround(self, filepath, width=1200, height=800): """Workaround for (a) severe bug(s) in PyMOL preventing ray-traced images to be produced in command-line mode. Use this function in case neither cmd.ray() or cmd.png() work. """ sys.stdout = sys.__stdout__ cmd.feedback('disable', 'movie', 'everything') cmd.viewport(width, height) cmd.zoom('visible', 1.5) # Adapt the zoom to the viewport cmd.set('ray_trace_frames', 1) # Frames are raytraced before saving an image. cmd.mpng(filepath, 1, 1) # Use batch png mode with 1 frame only cmd.mplay() # cmd.mpng needs the animation to 'run' cmd.refresh() originalfile = "".join([filepath, '0001.png']) newfile = "".join([filepath, '.png']) ################################################# # Wait for file for max. 1 second and rename it # ################################################# attempts = 0 while not os.path.isfile(originalfile) and attempts <= 10: sleep(0.1) attempts += 1 if os.name == 'nt': # In Windows, make sure there is no file of the same name, cannot be overwritten as in Unix if os.path.isfile(newfile): os.remove(newfile) os.rename(originalfile, newfile) # Remove frame number in filename # Check if imagemagick is available and crop + resize the images if subprocess.call("type convert", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) == 0: attempts, ecode = 0, 1 # Check if file is truncated and wait if that's the case while ecode != 0 and attempts <= 10: ecode = subprocess.call(['convert', newfile, '/dev/null'], stdout=open('/dev/null', 'w'), stderr=subprocess.STDOUT) sleep(0.1) attempts += 1 trim = 'convert -trim ' + newfile + ' -bordercolor White -border 20x20 ' + newfile + ';' # Trim the image os.system(trim) getwidth = 'w=`convert ' + newfile + ' -ping -format "%w" info:`;' # Get the width of the new image getheight = 'h=`convert ' + newfile + ' -ping -format "%h" info:`;' # Get the hight of the new image newres = 'if [ "$w" -gt "$h" ]; then newr="${w%.*}x$w"; else newr="${h%.*}x$h"; fi;' # Set quadratic ratio quadratic = 'convert ' + newfile + ' -gravity center -extent "$newr" ' + newfile # Fill with whitespace os.system(getwidth + getheight + newres + quadratic) else: sys.stderr.write('Imagemagick not available. Images will not be resized or cropped.') def save_picture(self, outfolder, filename): """Saves a picture""" self.set_fancy_ray() self.png_workaround("/".join([outfolder, filename])) def set_fancy_ray(self): """Give the molecule a flat, modern look.""" cmd.set('light_count', 6) cmd.set('spec_count', 1.5) cmd.set('shininess', 4) cmd.set('specular', 0.3) cmd.set('reflect', 1.6) cmd.set('ambient', 0) cmd.set('direct', 0) cmd.set('ray_shadow', 0) # Gives the molecules a flat, modern look cmd.set('ambient_occlusion_mode', 1) cmd.set('ray_opaque_background', 0) # Transparent background def adapt_for_peptides(self): """Adapt visualization for peptide ligands and interchain contacts""" cmd.hide('sticks', self.ligname) cmd.set('cartoon_color', 'lightorange', self.ligname) cmd.show('cartoon', self.ligname) cmd.show('sticks', "byres *-L") cmd.util.cnc(self.ligname) cmd.remove('%sCartoon and chain %s' % (self.protname, self.plcomplex.chain)) cmd.set('cartoon_side_chain_helper', 0) def adapt_for_intra(self): """Adapt visualization for intra-protein interactions""" def refinements(self): """Refinements for the visualization""" # Show sticks for all residues interacing with the ligand cmd.select('AllBSRes', 'byres (Hydrophobic-P or HBondDonor-P or HBondAccept-P or PosCharge-P or NegCharge-P or ' 'StackRings-P or PiCatRing-P or HalogenAcc or Metal-P)') cmd.show('sticks', 'AllBSRes') # Show spheres for the ring centroids cmd.hide('everything', 'centroids*') cmd.show('nb_spheres', 'centroids*') # Show spheres for centers of charge if self.object_exists('Chargecenter-P') or self.object_exists('Chargecenter-L'): cmd.hide('nonbonded', 'chargecenter*') cmd.show('spheres', 'chargecenter*') cmd.set('sphere_scale', 0.4, 'chargecenter*') cmd.color('yellow', 'chargecenter*') cmd.set('valence', 1) # Show bond valency (e.g. double bonds) # Optional cartoon representation of the protein cmd.copy('%sCartoon' % self.protname, self.protname) cmd.show('cartoon', '%sCartoon' % self.protname) cmd.show('sticks', '%sCartoon' % self.protname) cmd.set('stick_transparency', 1, '%sCartoon' % self.protname) # Resize water molecules. Sometimes they are not heteroatoms HOH, but part of the protein cmd.set('sphere_scale', 0.2, 'resn HOH or Water') # Needs to be done here because of the copy made cmd.set('sphere_transparency', 0.4, '!(resn HOH or Water)') if 'Centroids*' in cmd.get_names("selections"): cmd.color('grey80', 'Centroids*') cmd.hide('spheres', '%sCartoon' % self.protname) cmd.hide('cartoon', '%sCartoon and resn DA+DG+DC+DU+DT+A+G+C+U+T' % self.protname) # Hide DNA/RNA Cartoon if self.ligname == 'SF4': # Special case for iron-sulfur clusters, can't be visualized with sticks cmd.show('spheres', '%s' % self.ligname) cmd.hide('everything', 'resn HOH &!Water') # Hide all non-interacting water molecules cmd.hide('sticks', '%s and !%s and !AllBSRes' % (self.protname, self.ligname)) # Hide all non-interacting residues if self.ligandtype in ['PEPTIDE', 'INTRA']: self.adapt_for_peptides() if self.ligandtype == 'INTRA': self.adapt_for_intra()