1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
|
import time
from operator import itemgetter
import lxml.etree as et
from plip.basic import config
from plip.basic.config import __version__
from plip.structure.preparation import PDBComplex
class StructureReport:
"""Creates reports (xml or txt) for one structure/"""
def __init__(self, mol: PDBComplex, outputprefix: str = 'report'):
self.mol = mol
self.excluded = self.mol.excluded
self.xmlreport = self.construct_xml_tree()
self.txtreport = self.construct_txt_file()
self.get_bindingsite_data()
self.outpath = mol.output_path
self.outputprefix = outputprefix
def construct_xml_tree(self):
"""Construct the basic XML tree"""
report = et.Element('report')
plipversion = et.SubElement(report, 'plipversion')
plipversion.text = __version__
date_of_creation = et.SubElement(report, 'date_of_creation')
date_of_creation.text = time.strftime("%Y/%m/%d")
citation_information = et.SubElement(report, 'citation_information')
citation_information.text = "Salentin,S. et al. PLIP: fully automated protein-ligand interaction profiler. " \
"Nucl. Acids Res. (1 July 2015) 43 (W1): W443-W447. doi: 10.1093/nar/gkv315"
maintainer_information = et.SubElement(report, 'maintainer_information')
maintainer_information.text = config.__maintainer__
mode = et.SubElement(report, 'mode')
if config.DNARECEPTOR:
mode.text = 'dna_receptor'
else:
mode.text = 'default'
pdbid = et.SubElement(report, 'pdbid')
pdbid.text = self.mol.pymol_name.upper()
filetype = et.SubElement(report, 'filetype')
filetype.text = self.mol.filetype.upper()
pdbfile = et.SubElement(report, 'pdbfile')
pdbfile.text = self.mol.sourcefiles['pdbcomplex']
pdbfixes = et.SubElement(report, 'pdbfixes')
pdbfixes.text = str(self.mol.information['pdbfixes'])
filename = et.SubElement(report, 'filename')
filename.text = str(self.mol.sourcefiles.get('filename') or None)
exligs = et.SubElement(report, 'excluded_ligands')
for i, exlig in enumerate(self.excluded):
e = et.SubElement(exligs, 'excluded_ligand', id=str(i + 1))
e.text = exlig
covalent = et.SubElement(report, 'covlinkages')
for i, covlinkage in enumerate(self.mol.covalent):
e = et.SubElement(covalent, 'covlinkage', id=str(i + 1))
f1 = et.SubElement(e, 'res1')
f2 = et.SubElement(e, 'res2')
f1.text = ":".join([covlinkage.id1, covlinkage.chain1, str(covlinkage.pos1)])
f2.text = ":".join([covlinkage.id2, covlinkage.chain2, str(covlinkage.pos2)])
return report
def construct_txt_file(self):
"""Construct the header of the txt file"""
textlines = ['Prediction of noncovalent interactions for PDB structure %s' % self.mol.pymol_name.upper(), ]
textlines.append("=" * len(textlines[0]))
textlines.append('Created on %s using PLIP v%s\n' % (time.strftime("%Y/%m/%d"), __version__))
textlines.append('If you are using PLIP in your work, please cite:')
textlines.append('Salentin,S. et al. PLIP: fully automated protein-ligand interaction profiler.')
textlines.append('Nucl. Acids Res. (1 July 2015) 43 (W1): W443-W447. doi: 10.1093/nar/gkv315\n')
if len(self.excluded) != 0:
textlines.append('Excluded molecules as ligands: %s\n' % ','.join([lig for lig in self.excluded]))
if config.DNARECEPTOR:
textlines.append('DNA/RNA in structure was chosen as the receptor part.\n')
return textlines
def get_bindingsite_data(self):
"""Get the additional data for the binding sites"""
for i, site in enumerate(sorted(self.mol.interaction_sets)):
s = self.mol.interaction_sets[site]
bindingsite = BindingSiteReport(s).generate_xml()
bindingsite.set('id', str(i + 1))
bindingsite.set('has_interactions', 'False')
self.xmlreport.insert(i + 1, bindingsite)
for itype in BindingSiteReport(s).generate_txt():
self.txtreport.append(itype)
if not s.no_interactions:
bindingsite.set('has_interactions', 'True')
else:
self.txtreport.append('No interactions detected.')
def write_xml(self, as_string=False):
"""Write the XML report"""
if not as_string:
et.ElementTree(self.xmlreport).write('{}/{}.xml'.format(self.outpath, self.outputprefix), pretty_print=True,
xml_declaration=True)
else:
output = et.tostring(self.xmlreport, pretty_print=True)
print(output.decode('utf8'))
def write_txt(self, as_string=False):
"""Write the TXT report"""
if not as_string:
with open('{}/{}.txt'.format(self.outpath, self.outputprefix), 'w') as f:
[f.write(textline + '\n') for textline in self.txtreport]
else:
output = '\n'.join(self.txtreport)
print(output)
class BindingSiteReport:
"""Gather report data and generate reports for one binding site in different formats."""
def __init__(self, plcomplex):
################
# GENERAL DATA #
################
self.complex = plcomplex
self.ligand = self.complex.ligand
self.bindingsite = self.complex.bindingsite
self.output_path = self.complex.output_path
self.bsid = ':'.join([self.ligand.hetid, self.ligand.chain, str(self.ligand.position)])
self.longname = self.ligand.longname
self.ligtype = self.ligand.type
self.bs_res = self.bindingsite.bs_res
self.min_dist = self.bindingsite.min_dist
self.bs_res_interacting = self.complex.interacting_res
self.pdbid = self.complex.pdbid.upper()
self.lig_members = self.complex.lig_members
self.interacting_chains = self.complex.interacting_chains
############################
# HYDROPHOBIC INTERACTIONS #
############################
self.hydrophobic_features = (
'RESNR', 'RESTYPE', 'RESCHAIN', 'RESNR_LIG', 'RESTYPE_LIG', 'RESCHAIN_LIG', 'DIST', 'LIGCARBONIDX',
'PROTCARBONIDX', 'LIGCOO',
'PROTCOO')
self.hydrophobic_info = []
for hydroph in self.complex.hydrophobic_contacts:
self.hydrophobic_info.append((hydroph.resnr, hydroph.restype, hydroph.reschain, hydroph.resnr_l,
hydroph.restype_l, hydroph.reschain_l, '%.2f' % hydroph.distance,
hydroph.ligatom_orig_idx, hydroph.bsatom_orig_idx, hydroph.ligatom.coords,
hydroph.bsatom.coords))
##################
# HYDROGEN BONDS #
##################
self.hbond_features = (
'RESNR', 'RESTYPE', 'RESCHAIN', 'RESNR_LIG', 'RESTYPE_LIG', 'RESCHAIN_LIG', 'SIDECHAIN', 'DIST_H-A',
'DIST_D-A',
'DON_ANGLE',
'PROTISDON', 'DONORIDX', 'DONORTYPE', 'ACCEPTORIDX', 'ACCEPTORTYPE', 'LIGCOO', 'PROTCOO')
self.hbond_info = []
for hbond in self.complex.hbonds_pdon + self.complex.hbonds_ldon:
ligatom, protatom = (hbond.a, hbond.d) if hbond.protisdon else (hbond.d, hbond.a)
self.hbond_info.append((hbond.resnr, hbond.restype, hbond.reschain, hbond.resnr_l, hbond.restype_l,
hbond.reschain_l, hbond.sidechain,
'%.2f' % hbond.distance_ah, '%.2f' % hbond.distance_ad, '%.2f' % hbond.angle,
hbond.protisdon, hbond.d_orig_idx, hbond.dtype, hbond.a_orig_idx, hbond.atype,
ligatom.coords, protatom.coords))
#################
# WATER-BRIDGES #
#################
self.waterbridge_features = (
'RESNR', 'RESTYPE', 'RESCHAIN', 'RESNR_LIG', 'RESTYPE_LIG', 'RESCHAIN_LIG', 'DIST_A-W', 'DIST_D-W',
'DON_ANGLE',
'WATER_ANGLE',
'PROTISDON', 'DONOR_IDX', 'DONORTYPE', 'ACCEPTOR_IDX', 'ACCEPTORTYPE', 'WATER_IDX',
'LIGCOO', 'PROTCOO', 'WATERCOO')
# The coordinate format is an exception here, since the interaction is not only between ligand and protein
self.waterbridge_info = []
for wbridge in self.complex.water_bridges:
lig, prot = (wbridge.a, wbridge.d) if wbridge.protisdon else (wbridge.d, wbridge.a)
self.waterbridge_info.append((wbridge.resnr, wbridge.restype, wbridge.reschain, wbridge.resnr_l,
wbridge.restype_l, wbridge.reschain_l,
'%.2f' % wbridge.distance_aw, '%.2f' % wbridge.distance_dw,
'%.2f' % wbridge.d_angle, '%.2f' % wbridge.w_angle, wbridge.protisdon,
wbridge.d_orig_idx, wbridge.dtype, wbridge.a_orig_idx, wbridge.atype,
wbridge.water_orig_idx, lig.coords, prot.coords, wbridge.water.coords))
################
# SALT BRIDGES #
################
self.saltbridge_features = (
'RESNR', 'RESTYPE', 'RESCHAIN', 'RESNR_LIG', 'RESTYPE_LIG', 'RESCHAIN_LIG', 'DIST', 'PROTISPOS',
'LIG_GROUP',
'LIG_IDX_LIST',
'LIGCOO', 'PROTCOO')
self.saltbridge_info = []
for sb in self.complex.saltbridge_lneg + self.complex.saltbridge_pneg:
if sb.protispos:
group, ids = sb.negative.fgroup, [str(x) for x in sb.negative.atoms_orig_idx]
self.saltbridge_info.append((sb.resnr, sb.restype, sb.reschain, sb.resnr_l, sb.restype_l, sb.reschain_l,
'%.2f' % sb.distance, sb.protispos,
group.capitalize(), ",".join(ids),
tuple(sb.negative.center), tuple(sb.positive.center)))
else:
group, ids = sb.positive.fgroup, [str(x) for x in sb.positive.atoms_orig_idx]
self.saltbridge_info.append((sb.resnr, sb.restype, sb.reschain, sb.resnr_l, sb.restype_l, sb.reschain_l,
'%.2f' % sb.distance, sb.protispos,
group.capitalize(), ",".join(ids),
tuple(sb.positive.center), tuple(sb.negative.center)))
###############
# PI-STACKING #
###############
self.pistacking_features = (
'RESNR', 'RESTYPE', 'RESCHAIN', 'RESNR_LIG', 'RESTYPE_LIG', 'RESCHAIN_LIG', 'CENTDIST', 'ANGLE', 'OFFSET',
'TYPE',
'LIG_IDX_LIST', 'LIGCOO', 'PROTCOO')
self.pistacking_info = []
for stack in self.complex.pistacking:
ids = [str(x) for x in stack.ligandring.atoms_orig_idx]
self.pistacking_info.append((stack.resnr, stack.restype, stack.reschain, stack.resnr_l, stack.restype_l,
stack.reschain_l, '%.2f' % stack.distance,
'%.2f' % stack.angle, '%.2f' % stack.offset, stack.type, ",".join(ids),
tuple(stack.ligandring.center), tuple(stack.proteinring.center)))
##########################
# PI-CATION INTERACTIONS #
##########################
self.pication_features = (
'RESNR', 'RESTYPE', 'RESCHAIN', 'RESNR_LIG', 'RESTYPE_LIG', 'RESCHAIN_LIG', 'DIST', 'OFFSET', 'PROTCHARGED',
'LIG_GROUP',
'LIG_IDX_LIST', 'LIGCOO', 'PROTCOO')
self.pication_info = []
for picat in self.complex.pication_laro + self.complex.pication_paro:
if picat.protcharged:
ids = [str(x) for x in picat.ring.atoms_orig_idx]
group = 'Aromatic'
self.pication_info.append((picat.resnr, picat.restype, picat.reschain, picat.resnr_l, picat.restype_l,
picat.reschain_l, '%.2f' % picat.distance,
'%.2f' % picat.offset, picat.protcharged, group, ",".join(ids),
tuple(picat.ring.center), tuple(picat.charge.center)))
else:
ids = [str(x) for x in picat.charge.atoms_orig_idx]
group = picat.charge.fgroup
self.pication_info.append((picat.resnr, picat.restype, picat.reschain, picat.resnr_l, picat.restype_l,
picat.reschain_l, '%.2f' % picat.distance,
'%.2f' % picat.offset, picat.protcharged, group, ",".join(ids),
tuple(picat.charge.center), tuple(picat.ring.center)))
#################
# HALOGEN BONDS #
#################
self.halogen_features = (
'RESNR', 'RESTYPE', 'RESCHAIN', 'RESNR_LIG', 'RESTYPE_LIG', 'RESCHAIN_LIG', 'SIDECHAIN', 'DIST',
'DON_ANGLE',
'ACC_ANGLE',
'DON_IDX', 'DONORTYPE', 'ACC_IDX', 'ACCEPTORTYPE', 'LIGCOO', 'PROTCOO')
self.halogen_info = []
for halogen in self.complex.halogen_bonds:
self.halogen_info.append((halogen.resnr, halogen.restype, halogen.reschain, halogen.resnr_l,
halogen.restype_l, halogen.reschain_l, halogen.sidechain,
'%.2f' % halogen.distance, '%.2f' % halogen.don_angle, '%.2f' % halogen.acc_angle,
halogen.don_orig_idx, halogen.donortype,
halogen.acc_orig_idx, halogen.acctype,
halogen.acc.o.coords, halogen.don.x.coords))
###################
# METAL COMPLEXES #
###################
self.metal_features = (
'RESNR', 'RESTYPE', 'RESCHAIN', 'RESNR_LIG', 'RESTYPE_LIG', 'RESCHAIN_LIG', 'METAL_IDX', 'METAL_TYPE',
'TARGET_IDX', 'TARGET_TYPE',
'COORDINATION', 'DIST', 'LOCATION', 'RMS', 'GEOMETRY', 'COMPLEXNUM', 'METALCOO',
'TARGETCOO')
self.metal_info = []
# Coordinate format here is non-standard since the interaction partner can be either ligand or protein
for m in self.complex.metal_complexes:
self.metal_info.append(
(m.resnr, m.restype, m.reschain, m.resnr_l, m.restype_l, m.reschain_l, m.metal_orig_idx, m.metal_type,
m.target_orig_idx, m.target_type, m.coordination_num, '%.2f' % m.distance,
m.location, '%.2f' % m.rms, m.geometry, str(m.complexnum), m.metal.coords,
m.target.atom.coords))
def write_section(self, name, features, info, f):
"""Provides formatting for one section (e.g. hydrogen bonds)"""
if not len(info) == 0:
f.write('\n\n### %s ###\n' % name)
f.write('%s\n' % '\t'.join(features))
for line in info:
f.write('%s\n' % '\t'.join(map(str, line)))
def rst_table(self, array):
"""Given an array, the function formats and returns and table in rST format."""
# Determine cell width for each column
cell_dict = {}
for i, row in enumerate(array):
for j, val in enumerate(row):
if j not in cell_dict:
cell_dict[j] = []
cell_dict[j].append(val)
for item in cell_dict:
cell_dict[item] = max([len(x) for x in cell_dict[item]]) + 1 # Contains adapted width for each column
# Format top line
num_cols = len(array[0])
form = '+'
for col in range(num_cols):
form += (cell_dict[col] + 1) * '-'
form += '+'
form += '\n'
# Format values
for i, row in enumerate(array):
form += '| '
for j, val in enumerate(row):
cell_width = cell_dict[j]
form += str(val) + (cell_width - len(val)) * ' ' + '| '
form.rstrip()
form += '\n'
# Seperation lines
form += '+'
if i == 0:
sign = '='
else:
sign = '-'
for col in range(num_cols):
form += (cell_dict[col] + 1) * sign
form += '+'
form += '\n'
return form
def generate_txt(self):
"""Generates an flat text report for a single binding site"""
txt = []
titletext = '%s (%s) - %s' % (self.bsid, self.longname, self.ligtype)
txt.append(titletext)
for i, member in enumerate(self.lig_members[1:]):
txt.append(' + %s' % ":".join(str(element) for element in member))
txt.append("-" * len(titletext))
txt.append("Interacting chain(s): %s\n" % ','.join([chain for chain in self.interacting_chains]))
for section in [['Hydrophobic Interactions', self.hydrophobic_features, self.hydrophobic_info],
['Hydrogen Bonds', self.hbond_features, self.hbond_info],
['Water Bridges', self.waterbridge_features, self.waterbridge_info],
['Salt Bridges', self.saltbridge_features, self.saltbridge_info],
['pi-Stacking', self.pistacking_features, self.pistacking_info],
['pi-Cation Interactions', self.pication_features, self.pication_info],
['Halogen Bonds', self.halogen_features, self.halogen_info],
['Metal Complexes', self.metal_features, self.metal_info]]:
iname, features, interaction_information = section
# Sort results first by res number, then by distance and finally ligand coordinates to get a unique order
interaction_information = sorted(interaction_information, key=itemgetter(0, 2, -2))
if not len(interaction_information) == 0:
txt.append('\n**%s**' % iname)
table = [features, ]
for single_contact in interaction_information:
values = []
for x in single_contact:
if type(x) == str:
values.append(x)
elif type(x) == tuple and len(x) == 3: # Coordinates
values.append("%.3f, %.3f, %.3f" % x)
else:
values.append(str(x))
table.append(values)
txt.append(self.rst_table(table))
txt.append('\n')
return txt
def generate_xml(self):
"""Generates an XML-formatted report for a single binding site"""
report = et.Element('bindingsite')
identifiers = et.SubElement(report, 'identifiers')
longname = et.SubElement(identifiers, 'longname')
ligtype = et.SubElement(identifiers, 'ligtype')
hetid = et.SubElement(identifiers, 'hetid')
chain = et.SubElement(identifiers, 'chain')
position = et.SubElement(identifiers, 'position')
composite = et.SubElement(identifiers, 'composite')
members = et.SubElement(identifiers, 'members')
smiles = et.SubElement(identifiers, 'smiles')
inchikey = et.SubElement(identifiers, 'inchikey')
# Ligand properties. Number of (unpaired) functional atoms and rings.
lig_properties = et.SubElement(report, 'lig_properties')
num_heavy_atoms = et.SubElement(lig_properties, 'num_heavy_atoms')
num_hbd = et.SubElement(lig_properties, 'num_hbd')
num_hbd.text = str(self.ligand.num_hbd)
num_unpaired_hbd = et.SubElement(lig_properties, 'num_unpaired_hbd')
num_unpaired_hbd.text = str(self.complex.num_unpaired_hbd)
num_hba = et.SubElement(lig_properties, 'num_hba')
num_hba.text = str(self.ligand.num_hba)
num_unpaired_hba = et.SubElement(lig_properties, 'num_unpaired_hba')
num_unpaired_hba.text = str(self.complex.num_unpaired_hba)
num_hal = et.SubElement(lig_properties, 'num_hal')
num_hal.text = str(self.ligand.num_hal)
num_unpaired_hal = et.SubElement(lig_properties, 'num_unpaired_hal')
num_unpaired_hal.text = str(self.complex.num_unpaired_hal)
num_aromatic_rings = et.SubElement(lig_properties, 'num_aromatic_rings')
num_aromatic_rings.text = str(self.ligand.num_rings)
num_rot_bonds = et.SubElement(lig_properties, 'num_rotatable_bonds')
num_rot_bonds.text = str(self.ligand.num_rot_bonds)
molweight = et.SubElement(lig_properties, 'molweight')
molweight.text = str(self.ligand.molweight)
logp = et.SubElement(lig_properties, 'logp')
logp.text = str(self.ligand.logp)
ichains = et.SubElement(report, 'interacting_chains')
bsresidues = et.SubElement(report, 'bs_residues')
for i, ichain in enumerate(self.interacting_chains):
c = et.SubElement(ichains, 'interacting_chain', id=str(i + 1))
c.text = ichain
for i, bsres in enumerate(self.bs_res):
contact = 'True' if bsres in self.bs_res_interacting else 'False'
distance = '%.1f' % self.min_dist[bsres][0]
aatype = self.min_dist[bsres][1]
c = et.SubElement(bsresidues, 'bs_residue', id=str(i + 1), contact=contact, min_dist=distance, aa=aatype)
c.text = bsres
hetid.text, chain.text, position.text = self.ligand.hetid, self.ligand.chain, str(self.ligand.position)
composite.text = 'True' if len(self.lig_members) > 1 else 'False'
longname.text = self.longname
ligtype.text = self.ligtype
smiles.text = self.ligand.smiles
inchikey.text = self.ligand.inchikey
num_heavy_atoms.text = str(self.ligand.heavy_atoms) # Number of heavy atoms in ligand
for i, member in enumerate(self.lig_members):
bsid = ":".join(str(element) for element in member)
m = et.SubElement(members, 'member', id=str(i + 1))
m.text = bsid
interactions = et.SubElement(report, 'interactions')
def format_interactions(element_name, features, interaction_information):
"""Returns a formatted element with interaction information."""
interaction = et.Element(element_name)
# Sort results first by res number, then by distance and finally ligand coordinates to get a unique order
interaction_information = sorted(interaction_information, key=itemgetter(0, 2, -2))
for j, single_contact in enumerate(interaction_information):
if not element_name == 'metal_complexes':
new_contact = et.SubElement(interaction, element_name[:-1], id=str(j + 1))
else: # Metal Complex[es]
new_contact = et.SubElement(interaction, element_name[:-2], id=str(j + 1))
for i, feature in enumerate(single_contact):
# Just assign the value unless it's an atom list, use subelements in this case
if features[i] == 'LIG_IDX_LIST':
feat = et.SubElement(new_contact, features[i].lower())
for k, atm_idx in enumerate(feature.split(',')):
idx = et.SubElement(feat, 'idx', id=str(k + 1))
idx.text = str(atm_idx)
elif features[i].endswith('COO'):
feat = et.SubElement(new_contact, features[i].lower())
xc, yc, zc = feature
xcoo = et.SubElement(feat, 'x')
xcoo.text = '%.3f' % xc
ycoo = et.SubElement(feat, 'y')
ycoo.text = '%.3f' % yc
zcoo = et.SubElement(feat, 'z')
zcoo.text = '%.3f' % zc
else:
feat = et.SubElement(new_contact, features[i].lower())
feat.text = str(feature)
return interaction
interactions.append(format_interactions('hydrophobic_interactions', self.hydrophobic_features,
self.hydrophobic_info))
interactions.append(format_interactions('hydrogen_bonds', self.hbond_features, self.hbond_info))
interactions.append(format_interactions('water_bridges', self.waterbridge_features, self.waterbridge_info))
interactions.append(format_interactions('salt_bridges', self.saltbridge_features, self.saltbridge_info))
interactions.append(format_interactions('pi_stacks', self.pistacking_features, self.pistacking_info))
interactions.append(format_interactions('pi_cation_interactions', self.pication_features, self.pication_info))
interactions.append(format_interactions('halogen_bonds', self.halogen_features, self.halogen_info))
interactions.append(format_interactions('metal_complexes', self.metal_features, self.metal_info))
# Mappings
mappings = et.SubElement(report, 'mappings')
smiles_to_pdb = et.SubElement(mappings, 'smiles_to_pdb') # SMILES numbering to PDB file numbering (atoms)
bsid = ':'.join([self.ligand.hetid, self.ligand.chain, str(self.ligand.position)])
if self.ligand.atomorder is not None:
smiles_to_pdb_map = [(key, self.ligand.Mapper.mapid(self.ligand.can_to_pdb[key],
mtype='protein', bsid=bsid)) for key in
self.ligand.can_to_pdb]
smiles_to_pdb.text = ','.join([str(mapping[0]) + ':' + str(mapping[1]) for mapping in smiles_to_pdb_map])
else:
smiles_to_pdb.text = ''
return report
|