1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
import itertools
from collections import defaultdict
from collections import namedtuple
import numpy as np
from openbabel.openbabel import OBAtomAtomIter
from plip.basic import config, logger
from plip.basic.supplemental import vecangle, vector, euclidean3d, projection
from plip.basic.supplemental import whichresnumber, whichrestype, whichchain
logger = logger.get_logger()
def filter_contacts(pairings):
"""Filter interactions by two criteria:
1. No interactions between the same residue (important for intra mode).
2. No duplicate interactions (A with B and B with A, also important for intra mode)."""
if not config.INTRA:
return pairings
filtered1_pairings = [p for p in pairings if (p.resnr, p.reschain) != (p.resnr_l, p.reschain_l)]
already_considered = []
filtered2_pairings = []
for contact in filtered1_pairings:
try:
dist = 'D{}'.format(round(contact.distance, 2))
except AttributeError:
try:
dist = 'D{}'.format(round(contact.distance_ah, 2))
except AttributeError:
dist = 'D{}'.format(round(contact.distance_aw, 2))
res1, res2 = ''.join([str(contact.resnr), contact.reschain]), ''.join(
[str(contact.resnr_l), contact.reschain_l])
data = {res1, res2, dist}
if data not in already_considered:
filtered2_pairings.append(contact)
already_considered.append(data)
return filtered2_pairings
##################################################
# FUNCTIONS FOR DETECTION OF SPECIFIC INTERACTIONS
##################################################
def hydrophobic_interactions(atom_set_a, atom_set_b):
"""Detection of hydrophobic pliprofiler between atom_set_a (binding site) and atom_set_b (ligand).
Definition: All pairs of qualified carbon atoms within a distance of HYDROPH_DIST_MAX
"""
data = namedtuple('hydroph_interaction', 'bsatom bsatom_orig_idx ligatom ligatom_orig_idx '
'distance restype resnr reschain restype_l, resnr_l, reschain_l')
pairings = []
for a, b in itertools.product(atom_set_a, atom_set_b):
if a.orig_idx == b.orig_idx:
continue
e = euclidean3d(a.atom.coords, b.atom.coords)
if not config.MIN_DIST < e < config.HYDROPH_DIST_MAX:
continue
restype, resnr, reschain = whichrestype(a.atom), whichresnumber(a.atom), whichchain(a.atom)
restype_l, resnr_l, reschain_l = whichrestype(b.orig_atom), whichresnumber(b.orig_atom), whichchain(b.orig_atom)
contact = data(bsatom=a.atom, bsatom_orig_idx=a.orig_idx, ligatom=b.atom, ligatom_orig_idx=b.orig_idx,
distance=e, restype=restype, resnr=resnr,
reschain=reschain, restype_l=restype_l,
resnr_l=resnr_l, reschain_l=reschain_l)
pairings.append(contact)
return filter_contacts(pairings)
def hbonds(acceptors, donor_pairs, protisdon, typ):
"""Detection of hydrogen bonds between sets of acceptors and donor pairs.
Definition: All pairs of hydrogen bond acceptor and donors with
donor hydrogens and acceptor showing a distance within HBOND DIST MIN and HBOND DIST MAX
and donor angles above HBOND_DON_ANGLE_MIN
"""
data = namedtuple('hbond', 'a a_orig_idx d d_orig_idx h distance_ah distance_ad angle type protisdon resnr '
'restype reschain resnr_l restype_l reschain_l sidechain atype dtype')
pairings = []
for acc, don in itertools.product(acceptors, donor_pairs):
if not typ == 'strong':
continue
# Regular (strong) hydrogen bonds
dist_ah = euclidean3d(acc.a.coords, don.h.coords)
dist_ad = euclidean3d(acc.a.coords, don.d.coords)
if not config.MIN_DIST < dist_ad < config.HBOND_DIST_MAX:
continue
vec1, vec2 = vector(don.h.coords, don.d.coords), vector(don.h.coords, acc.a.coords)
v = vecangle(vec1, vec2)
if not v > config.HBOND_DON_ANGLE_MIN:
continue
protatom = don.d.OBAtom if protisdon else acc.a.OBAtom
ligatom = don.d.OBAtom if not protisdon else acc.a.OBAtom
is_sidechain_hbond = protatom.GetResidue().GetAtomProperty(protatom, 8) # Check if sidechain atom
resnr = whichresnumber(don.d) if protisdon else whichresnumber(acc.a)
resnr_l = whichresnumber(acc.a_orig_atom) if protisdon else whichresnumber(don.d_orig_atom)
restype = whichrestype(don.d) if protisdon else whichrestype(acc.a)
restype_l = whichrestype(acc.a_orig_atom) if protisdon else whichrestype(don.d_orig_atom)
reschain = whichchain(don.d) if protisdon else whichchain(acc.a)
rechain_l = whichchain(acc.a_orig_atom) if protisdon else whichchain(don.d_orig_atom)
# Next line prevents H-Bonds within amino acids in intermolecular interactions
if config.INTRA is not None and whichresnumber(don.d) == whichresnumber(acc.a):
continue
# Next line prevents backbone-backbone H-Bonds
if config.INTRA is not None and protatom.GetResidue().GetAtomProperty(protatom,
8) and ligatom.GetResidue().GetAtomProperty(
ligatom, 8):
continue
contact = data(a=acc.a, a_orig_idx=acc.a_orig_idx, d=don.d, d_orig_idx=don.d_orig_idx, h=don.h,
distance_ah=dist_ah, distance_ad=dist_ad, angle=v, type=typ, protisdon=protisdon,
resnr=resnr, restype=restype, reschain=reschain, resnr_l=resnr_l,
restype_l=restype_l, reschain_l=rechain_l, sidechain=is_sidechain_hbond,
atype=acc.a.type, dtype=don.d.type)
pairings.append(contact)
return filter_contacts(pairings)
def pistacking(rings_bs, rings_lig):
"""Return all pi-stackings between the given aromatic ring systems in receptor and ligand."""
data = namedtuple(
'pistack',
'proteinring ligandring distance angle offset type restype resnr reschain restype_l resnr_l reschain_l')
pairings = []
for r, l in itertools.product(rings_bs, rings_lig):
# DISTANCE AND RING ANGLE CALCULATION
d = euclidean3d(r.center, l.center)
b = vecangle(r.normal, l.normal)
a = min(b, 180 - b if not 180 - b < 0 else b) # Smallest of two angles, depending on direction of normal
# RING CENTER OFFSET CALCULATION (project each ring center into the other ring)
proj1 = projection(l.normal, l.center, r.center)
proj2 = projection(r.normal, r.center, l.center)
offset = min(euclidean3d(proj1, l.center), euclidean3d(proj2, r.center))
# RECEPTOR DATA
resnr, restype, reschain = whichresnumber(r.atoms[0]), whichrestype(r.atoms[0]), whichchain(r.atoms[0])
resnr_l, restype_l, reschain_l = whichresnumber(l.orig_atoms[0]), whichrestype(
l.orig_atoms[0]), whichchain(l.orig_atoms[0])
# SELECTION BY DISTANCE, ANGLE AND OFFSET
passed = False
if not config.MIN_DIST < d < config.PISTACK_DIST_MAX:
continue
if 0 < a < config.PISTACK_ANG_DEV and offset < config.PISTACK_OFFSET_MAX:
ptype = 'P'
passed = True
if 90 - config.PISTACK_ANG_DEV < a < 90 + config.PISTACK_ANG_DEV and offset < config.PISTACK_OFFSET_MAX:
ptype = 'T'
passed = True
if passed:
contact = data(proteinring=r, ligandring=l, distance=d, angle=a, offset=offset,
type=ptype, resnr=resnr, restype=restype, reschain=reschain,
resnr_l=resnr_l, restype_l=restype_l, reschain_l=reschain_l)
pairings.append(contact)
return filter_contacts(pairings)
def pication(rings, pos_charged, protcharged):
"""Return all pi-Cation interaction between aromatic rings and positively charged groups.
For tertiary and quaternary amines, check also the angle between the ring and the nitrogen.
"""
data = namedtuple(
'pication', 'ring charge distance offset type restype resnr reschain restype_l resnr_l reschain_l protcharged')
pairings = []
if len(rings) == 0 or len(pos_charged) == 0:
return pairings
for ring in rings:
c = ring.center
for p in pos_charged:
d = euclidean3d(c, p.center)
# Project the center of charge into the ring and measure distance to ring center
proj = projection(ring.normal, ring.center, p.center)
offset = euclidean3d(proj, ring.center)
if not config.MIN_DIST < d < config.PICATION_DIST_MAX or not offset < config.PISTACK_OFFSET_MAX:
continue
if type(p).__name__ == 'lcharge' and p.fgroup == 'tertamine':
# Special case here if the ligand has a tertiary amine, check an additional angle
# Otherwise, we might have have a pi-cation interaction 'through' the ligand
n_atoms = [a_neighbor for a_neighbor in OBAtomAtomIter(p.atoms[0].OBAtom)]
n_atoms_coords = [(a.x(), a.y(), a.z()) for a in n_atoms]
amine_normal = np.cross(vector(n_atoms_coords[0], n_atoms_coords[1]),
vector(n_atoms_coords[2], n_atoms_coords[0]))
b = vecangle(ring.normal, amine_normal)
# Smallest of two angles, depending on direction of normal
a = min(b, 180 - b if not 180 - b < 0 else b)
if not a > 30.0:
resnr, restype = whichresnumber(ring.atoms[0]), whichrestype(ring.atoms[0])
reschain = whichchain(ring.atoms[0])
resnr_l, restype_l = whichresnumber(p.orig_atoms[0]), whichrestype(p.orig_atoms[0])
reschain_l = whichchain(p.orig_atoms[0])
contact = data(ring=ring, charge=p, distance=d, offset=offset, type='regular',
restype=restype, resnr=resnr, reschain=reschain,
restype_l=restype_l, resnr_l=resnr_l, reschain_l=reschain_l,
protcharged=protcharged)
pairings.append(contact)
break
resnr = whichresnumber(p.atoms[0]) if protcharged else whichresnumber(ring.atoms[0])
resnr_l = whichresnumber(ring.orig_atoms[0]) if protcharged else whichresnumber(p.orig_atoms[0])
restype = whichrestype(p.atoms[0]) if protcharged else whichrestype(ring.atoms[0])
restype_l = whichrestype(ring.orig_atoms[0]) if protcharged else whichrestype(p.orig_atoms[0])
reschain = whichchain(p.atoms[0]) if protcharged else whichchain(ring.atoms[0])
reschain_l = whichchain(ring.orig_atoms[0]) if protcharged else whichchain(p.orig_atoms[0])
contact = data(ring=ring, charge=p, distance=d, offset=offset, type='regular', restype=restype,
resnr=resnr, reschain=reschain, restype_l=restype_l, resnr_l=resnr_l,
reschain_l=reschain_l, protcharged=protcharged)
pairings.append(contact)
return filter_contacts(pairings)
def saltbridge(poscenter, negcenter, protispos):
"""Detect all salt bridges (pliprofiler between centers of positive and negative charge)"""
data = namedtuple(
'saltbridge', 'positive negative distance protispos resnr restype reschain resnr_l restype_l reschain_l')
pairings = []
for pc, nc in itertools.product(poscenter, negcenter):
if not config.MIN_DIST < euclidean3d(pc.center, nc.center) < config.SALTBRIDGE_DIST_MAX:
continue
resnr = pc.resnr if protispos else nc.resnr
resnr_l = whichresnumber(nc.orig_atoms[0]) if protispos else whichresnumber(pc.orig_atoms[0])
restype = pc.restype if protispos else nc.restype
restype_l = whichrestype(nc.orig_atoms[0]) if protispos else whichrestype(pc.orig_atoms[0])
reschain = pc.reschain if protispos else nc.reschain
reschain_l = whichchain(nc.orig_atoms[0]) if protispos else whichchain(pc.orig_atoms[0])
contact = data(positive=pc, negative=nc, distance=euclidean3d(pc.center, nc.center), protispos=protispos,
resnr=resnr, restype=restype, reschain=reschain, resnr_l=resnr_l, restype_l=restype_l,
reschain_l=reschain_l)
pairings.append(contact)
return filter_contacts(pairings)
def halogen(acceptor, donor):
"""Detect all halogen bonds of the type Y-O...X-C"""
data = namedtuple('halogenbond', 'acc acc_orig_idx don don_orig_idx distance don_angle acc_angle restype '
'resnr reschain restype_l resnr_l reschain_l donortype acctype sidechain')
pairings = []
for acc, don in itertools.product(acceptor, donor):
dist = euclidean3d(acc.o.coords, don.x.coords)
if not config.MIN_DIST < dist < config.HALOGEN_DIST_MAX:
continue
vec1, vec2 = vector(acc.o.coords, acc.y.coords), vector(acc.o.coords, don.x.coords)
vec3, vec4 = vector(don.x.coords, acc.o.coords), vector(don.x.coords, don.c.coords)
acc_angle, don_angle = vecangle(vec1, vec2), vecangle(vec3, vec4)
is_sidechain_hal = acc.o.OBAtom.GetResidue().GetAtomProperty(acc.o.OBAtom, 8) # Check if sidechain atom
if not config.HALOGEN_ACC_ANGLE - config.HALOGEN_ANGLE_DEV < acc_angle \
< config.HALOGEN_ACC_ANGLE + config.HALOGEN_ANGLE_DEV:
continue
if not config.HALOGEN_DON_ANGLE - config.HALOGEN_ANGLE_DEV < don_angle \
< config.HALOGEN_DON_ANGLE + config.HALOGEN_ANGLE_DEV:
continue
restype, reschain, resnr = whichrestype(acc.o), whichchain(acc.o), whichresnumber(acc.o)
restype_l, reschain_l, resnr_l = whichrestype(don.orig_x), whichchain(don.orig_x), whichresnumber(don.orig_x)
contact = data(acc=acc, acc_orig_idx=acc.o_orig_idx, don=don, don_orig_idx=don.x_orig_idx,
distance=dist, don_angle=don_angle, acc_angle=acc_angle,
restype=restype, resnr=resnr,
reschain=reschain, restype_l=restype_l,
reschain_l=reschain_l, resnr_l=resnr_l, donortype=don.x.OBAtom.GetType(), acctype=acc.o.type,
sidechain=is_sidechain_hal)
pairings.append(contact)
return filter_contacts(pairings)
def water_bridges(bs_hba, lig_hba, bs_hbd, lig_hbd, water):
"""Find water-bridged hydrogen bonds between ligand and protein. For now only considers bridged of first degree."""
data = namedtuple('waterbridge', 'a a_orig_idx atype d d_orig_idx dtype h water water_orig_idx distance_aw '
'distance_dw d_angle w_angle type resnr restype reschain resnr_l restype_l reschain_l protisdon')
pairings = []
# First find all acceptor-water pairs with distance within d
# and all donor-water pairs with distance within d and angle greater theta
lig_aw, prot_aw, lig_dw, prot_hw = [], [], [], []
for w in water:
for acc1 in lig_hba:
dist = euclidean3d(acc1.a.coords, w.oxy.coords)
if config.WATER_BRIDGE_MINDIST <= dist <= config.WATER_BRIDGE_MAXDIST:
lig_aw.append((acc1, w, dist))
for acc2 in bs_hba:
dist = euclidean3d(acc2.a.coords, w.oxy.coords)
if config.WATER_BRIDGE_MINDIST <= dist <= config.WATER_BRIDGE_MAXDIST:
prot_aw.append((acc2, w, dist))
for don1 in lig_hbd:
dist = euclidean3d(don1.d.coords, w.oxy.coords)
d_angle = vecangle(vector(don1.h.coords, don1.d.coords), vector(don1.h.coords, w.oxy.coords))
if config.WATER_BRIDGE_MINDIST <= dist <= config.WATER_BRIDGE_MAXDIST \
and d_angle > config.WATER_BRIDGE_THETA_MIN:
lig_dw.append((don1, w, dist, d_angle))
for don2 in bs_hbd:
dist = euclidean3d(don2.d.coords, w.oxy.coords)
d_angle = vecangle(vector(don2.h.coords, don2.d.coords), vector(don2.h.coords, w.oxy.coords))
if config.WATER_BRIDGE_MINDIST <= dist <= config.WATER_BRIDGE_MAXDIST \
and d_angle > config.WATER_BRIDGE_THETA_MIN:
prot_hw.append((don2, w, dist, d_angle))
for l, p in itertools.product(lig_aw, prot_hw):
acc, wl, distance_aw = l
don, wd, distance_dw, d_angle = p
if not wl.oxy == wd.oxy:
continue
# Same water molecule and angle within omega
w_angle = vecangle(vector(acc.a.coords, wl.oxy.coords), vector(wl.oxy.coords, don.h.coords))
if not config.WATER_BRIDGE_OMEGA_MIN < w_angle < config.WATER_BRIDGE_OMEGA_MAX:
continue
resnr, reschain, restype = whichresnumber(don.d), whichchain(don.d), whichrestype(don.d)
resnr_l, reschain_l, restype_l = whichresnumber(acc.a_orig_atom), whichchain(
acc.a_orig_atom), whichrestype(acc.a_orig_atom)
contact = data(a=acc.a, a_orig_idx=acc.a_orig_idx, atype=acc.a.type, d=don.d, d_orig_idx=don.d_orig_idx,
dtype=don.d.type, h=don.h, water=wl.oxy, water_orig_idx=wl.oxy_orig_idx,
distance_aw=distance_aw, distance_dw=distance_dw, d_angle=d_angle, w_angle=w_angle,
type='first_deg', resnr=resnr, restype=restype,
reschain=reschain, restype_l=restype_l, resnr_l=resnr_l, reschain_l=reschain_l, protisdon=True)
pairings.append(contact)
for p, l in itertools.product(prot_aw, lig_dw):
acc, wl, distance_aw = p
don, wd, distance_dw, d_angle = l
if not wl.oxy == wd.oxy:
continue
# Same water molecule and angle within omega
w_angle = vecangle(vector(acc.a.coords, wl.oxy.coords), vector(wl.oxy.coords, don.h.coords))
if not config.WATER_BRIDGE_OMEGA_MIN < w_angle < config.WATER_BRIDGE_OMEGA_MAX:
continue
resnr, reschain, restype = whichresnumber(acc.a), whichchain(acc.a), whichrestype(acc.a)
resnr_l, reschain_l, restype_l = whichresnumber(don.d_orig_atom), whichchain(
don.d_orig_atom), whichrestype(don.d_orig_atom)
contact = data(a=acc.a, a_orig_idx=acc.a_orig_idx, atype=acc.a.type, d=don.d, d_orig_idx=don.d_orig_idx,
dtype=don.d.type, h=don.h, water=wl.oxy, water_orig_idx=wl.oxy_orig_idx,
distance_aw=distance_aw, distance_dw=distance_dw,
d_angle=d_angle, w_angle=w_angle, type='first_deg', resnr=resnr,
restype=restype, reschain=reschain,
restype_l=restype_l, reschain_l=reschain_l, resnr_l=resnr_l, protisdon=False)
pairings.append(contact)
return filter_contacts(pairings)
def metal_complexation(metals, metal_binding_lig, metal_binding_bs):
"""Find all metal complexes between metals and appropriate groups in both protein and ligand, as well as water"""
data = namedtuple('metal_complex', 'metal metal_orig_idx metal_type target target_orig_idx target_type '
'coordination_num distance resnr restype '
'reschain restype_l reschain_l resnr_l location rms, geometry num_partners complexnum')
pairings_dict = {}
pairings = []
# #@todo Refactor
metal_to_id = {}
metal_to_orig_atom = {}
for metal, target in itertools.product(metals, metal_binding_lig + metal_binding_bs):
distance = euclidean3d(metal.m.coords, target.atom.coords)
if not distance < config.METAL_DIST_MAX:
continue
if metal.m not in pairings_dict:
pairings_dict[metal.m] = [(target, distance), ]
metal_to_id[metal.m] = metal.m_orig_idx
metal_to_orig_atom[metal.m] = metal.orig_m
else:
pairings_dict[metal.m].append((target, distance))
for cnum, metal in enumerate(pairings_dict):
rms = 0.0
excluded = []
# cnum +1 being the complex number
contact_pairs = pairings_dict[metal]
num_targets = len(contact_pairs)
vectors_dict = defaultdict(list)
for contact_pair in contact_pairs:
target, distance = contact_pair
vectors_dict[target.atom.idx].append(vector(metal.coords, target.atom.coords))
# Listing of coordination numbers and their geometries
configs = {2: ['linear', ],
3: ['trigonal.planar', 'trigonal.pyramidal'],
4: ['tetrahedral', 'square.planar'],
5: ['trigonal.bipyramidal', 'square.pyramidal'],
6: ['octahedral', ]}
# Angle signatures for each geometry (as seen from each target atom)
ideal_angles = {'linear': [[180.0]] * 2,
'trigonal.planar': [[120.0, 120.0]] * 3,
'trigonal.pyramidal': [[109.5, 109.5]] * 3,
'tetrahedral': [[109.5, 109.5, 109.5, 109.5]] * 4,
'square.planar': [[90.0, 90.0, 90.0, 90.0]] * 4,
'trigonal.bipyramidal': [[120.0, 120.0, 90.0, 90.0]] * 3 + [[90.0, 90.0, 90.0, 180.0]] * 2,
'square.pyramidal': [[90.0, 90.0, 90.0, 180.0]] * 4 + [[90.0, 90.0, 90.0, 90.0]],
'octahedral': [[90.0, 90.0, 90.0, 90.0, 180.0]] * 6}
angles_dict = {}
for target in vectors_dict:
cur_vector = vectors_dict[target]
other_vectors = []
for t in vectors_dict:
if not t == target:
[other_vectors.append(x) for x in vectors_dict[t]]
angles = [vecangle(pair[0], pair[1]) for pair in itertools.product(cur_vector, other_vectors)]
angles_dict[target] = angles
all_total = [] # Record fit information for each geometry tested
gdata = namedtuple('gdata', 'geometry rms coordination excluded diff_targets') # Geometry Data
# Can't specify geometry with only one target
if num_targets == 1:
final_geom = 'NA'
final_coo = 1
excluded = []
rms = 0.0
else:
for coo in sorted(configs, reverse=True): # Start with highest coordination number
geometries = configs[coo]
for geometry in geometries:
signature = ideal_angles[geometry] # Set of ideal angles for geometry, from each perspective
geometry_total = 0
geometry_scores = [] # All scores for one geometry (from all subsignatures)
used_up_targets = [] # Use each target just once for a subsignature
not_used = []
coo_diff = num_targets - coo # How many more observed targets are there?
# Find best match for each subsignature
for subsignature in signature: # Ideal angles from one perspective
best_target = None # There's one best-matching target for each subsignature
best_target_score = 999
for k, target in enumerate(angles_dict):
if target not in used_up_targets:
observed_angles = angles_dict[target] # Observed angles from perspective of one target
single_target_scores = []
used_up_observed_angles = []
for i, ideal_angle in enumerate(subsignature):
# For each angle in the signature, find the best-matching observed angle
best_match = None
best_match_diff = 999
for j, observed_angle in enumerate(observed_angles):
if j not in used_up_observed_angles:
diff = abs(ideal_angle - observed_angle)
if diff < best_match_diff:
best_match_diff = diff
best_match = j
if best_match is not None:
used_up_observed_angles.append(best_match)
single_target_scores.append(best_match_diff)
# Calculate RMS for target angles
target_total = sum([x ** 2 for x in single_target_scores]) ** 0.5 # Tot. score targ/sig
if target_total < best_target_score:
best_target_score = target_total
best_target = target
used_up_targets.append(best_target)
geometry_scores.append(best_target_score)
# Total score is mean of RMS values
geometry_total = np.mean(geometry_scores)
# Record the targets not used for excluding them when deciding for a final geometry
[not_used.append(target) for target in angles_dict if target not in used_up_targets]
all_total.append(gdata(geometry=geometry, rms=geometry_total, coordination=coo,
excluded=not_used, diff_targets=coo_diff))
# Make a decision here. Starting with the geometry with lowest difference in ideal and observed partners ...
# Check if the difference between the RMS to the next best solution is not larger than 0.5
if not num_targets == 1: # Can't decide for any geoemtry in that case
all_total = sorted(all_total, key=lambda x: abs(x.diff_targets))
for i, total in enumerate(all_total):
next_total = all_total[i + 1]
this_rms, next_rms = total.rms, next_total.rms
diff_to_next = next_rms - this_rms
if diff_to_next > 0.5:
final_geom, final_coo, rms, excluded = total.geometry, total.coordination, total.rms, total.excluded
break
elif next_total.rms < 3.5:
final_geom, final_coo, = next_total.geometry, next_total.coordination
rms, excluded = next_total.rms, next_total.excluded
break
elif i == len(all_total) - 2:
final_geom, final_coo, rms, excluded = "NA", "NA", float('nan'), []
break
# Record all contact pairing, excluding those with targets superfluous for chosen geometry
only_water = set([x[0].location for x in contact_pairs]) == {'water'}
if not only_water: # No complex if just with water as targets
logger.info(f'metal ion {metal.type} complexed with {final_geom} geometry (coo. number {final_coo}/ {num_targets} observed)')
for contact_pair in contact_pairs:
target, distance = contact_pair
if target.atom.idx not in excluded:
metal_orig_atom = metal_to_orig_atom[metal]
restype_l, reschain_l, resnr_l = whichrestype(metal_orig_atom), whichchain(
metal_orig_atom), whichresnumber(metal_orig_atom)
contact = data(metal=metal, metal_orig_idx=metal_to_id[metal], metal_type=metal.type,
target=target, target_orig_idx=target.atom_orig_idx, target_type=target.type,
coordination_num=final_coo, distance=distance, resnr=target.resnr,
restype=target.restype, reschain=target.reschain, location=target.location,
rms=rms, geometry=final_geom, num_partners=num_targets, complexnum=cnum + 1,
resnr_l=resnr_l, restype_l=restype_l, reschain_l=reschain_l)
pairings.append(contact)
return filter_contacts(pairings)
|