aboutsummaryrefslogtreecommitdiff

iTeXSnip

Image -> LaTeX

iTeXSnip App Icon

Demo GIF

Works with handwritten formulae as well!

TODO

V1

  • [x] Rating API
  • [x] Preferences
    • Model load preferences
    • Detailed view preferences
    • Rating API server
  • [x] Complete Detailed Snippet View

V2

  • [ ] Math Solver
  • [ ] TeX Snippet Editor
  • [ ] Image Export
  • [ ] UI Overhaul
  • [ ] Optimizations

Misc

Quantization

You can download and replace the quantized files with non-quantized versions from here

Encoder Model

python -m onnxruntime.quantization.preprocess --input  iTexSnip/models/encoder_model.onnx --output  encoder-infer.onnx
import onnx
from onnxruntime.quantization import quantize_dynamic, QuantType
og = "encoder-infer.onnx"
quant = "encoder-quant.onnx"
quantized_model = quantize_dynamic(og, quant, nodes_to_exclude=['/embeddings/patch_embeddings/projection/Conv'])

It might be better if we quantize the encoder using static quantization.

Decoder Model

python -m onnxruntime.quantization.preprocess --input  iTexSnip/models/decoder_model.onnx --output  decoder-infer.onnx
import onnx
from onnxruntime.quantization import quantize_dynamic, QuantType
og = "decoder-infer.onnx"
quant = "decoder-quant.onnx"
quantized_model = quantize_dynamic(og, quant)