diff options
author | Navan Chauhan <navanchauhan@gmail.com> | 2024-04-03 09:36:58 -0600 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-04-03 09:36:58 -0600 |
commit | c908c4619c4acd183d1b1f6c7819918225f720bd (patch) | |
tree | 6a4247a202eecbb0f39b2e87e8ff75245c50dbdd /Content/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.md | |
parent | 0b112478250c2d5299ddcfaf1b6a31e4d6eedfd1 (diff) | |
parent | 03a85e52b35a750681b4c6d543fc9047a2fb0551 (diff) |
Merge branch 'vanilla-ssg' into dependabot/pip/jinja2-3.1.3
Diffstat (limited to 'Content/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.md')
-rw-r--r-- | Content/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.md | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/Content/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.md b/Content/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.md new file mode 100644 index 0000000..0435a6c --- /dev/null +++ b/Content/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.md @@ -0,0 +1,55 @@ +--- +date: 2024-03-26 15:36 +description: Quick derivation of the quadratic equation by completing the square +tags: mathematics +--- + +# Quadratic Formula Derivation + +The standard form of a quadratic equation is: + +$$ +ax^2 + bx + c = 0 +$$ + +Here, $a, b, c \in \mathbb{R}$, and $a \neq 0$ + +We begin by first dividing both sides by the coefficient $a$ + +$$ +\implies x^2 + \frac{b}{a}x + \frac{c}{a} = 0 +$$ + +We can rearrange the equation: + +$$ +x^2 + \frac{b}{a}x = - \frac{c}{a} +$$ + +We can then use the method of completing the square. ([Maths is Fun](https://www.mathsisfun.com/algebra/completing-square.html) has a really good explanation for this technique) + +$$ +x^2 + \frac{b}{a}x + (\frac{b}{2a})^2 = \frac{-c}{a} + (\frac{b}{2a})^2 +$$ + +On our LHS, we can clearly recognize that it is the expanded form of $(x + d)^2$ i.e $x^2 + 2x\cdot d + d^2$ + +$$ +\implies (x + \frac{b}{2a})^2 = \frac{-c}{a} + \frac{b^2}{4a^2} = \frac{-4ac + b^2}{4a^2} +$$ + +Taking the square root of both sides + +$$ +\begin{align*} +x + \frac{b}{2a} &= \frac{\sqrt{-4ac + b^2}}{2a} \\ +x &= \frac{\pm \sqrt{-4ac + b^2} - b}{2a} \\ +&= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} +\end{align*} +$$ + +This gives you the world famous quadratic formula: + +$$ +x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} +$$ |