summaryrefslogtreecommitdiff
path: root/feed.rss
diff options
context:
space:
mode:
Diffstat (limited to 'feed.rss')
-rw-r--r--feed.rss6
1 files changed, 3 insertions, 3 deletions
diff --git a/feed.rss b/feed.rss
index 54e0f89..5fec857 100644
--- a/feed.rss
+++ b/feed.rss
@@ -1,7 +1,7 @@
-<?xml version="1.0" encoding="UTF-8"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:content="http://purl.org/rss/1.0/modules/content"><channel><title>Navan Chauhan</title><description>I try to post tutorials, tips and tricks related to programming, designing and just some science stuff</description><link>https://navanchauhan.github.io/SwiftWebsite/</link><language>en</language><lastBuildDate>Sat, 4 Jan 2020 14:28:26 +0530</lastBuildDate><pubDate>Sat, 4 Jan 2020 14:28:26 +0530</pubDate><ttl>250</ttl><atom:link href="https://navanchauhan.github.io/SwiftWebsite/feed.rss" rel="self" type="application/rss+xml"/><item><guid isPermaLink="true">https://navanchauhan.github.io/SwiftWebsite/posts/splitting-zips</guid><title>Splitting ZIPs into Multiple Parts</title><description>Short code snippet for splitting zips.</description><link>https://navanchauhan.github.io/SwiftWebsite/posts/splitting-zips</link><pubDate>Sun, 8 Dec 2019 13:27:00 +0530</pubDate><content:encoded><![CDATA[<h1>Splitting ZIPs into Multiple Parts</h1><p><strong>Tested on macOS</strong></p><p>Creating the archive:</p><pre><code>zip -r -s 5 oodlesofnoodles.zip website/
+<?xml version="1.0" encoding="UTF-8"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:content="http://purl.org/rss/1.0/modules/content"><channel><title>Navan Chauhan</title><description>I try to post tutorials, tips and tricks related to programming, designing and just some science stuff</description><link>https://navanchauhan.github.io/SwiftWebsite/</link><language>en</language><lastBuildDate>Sat, 4 Jan 2020 14:57:36 +0530</lastBuildDate><pubDate>Sat, 4 Jan 2020 14:57:36 +0530</pubDate><ttl>250</ttl><atom:link href="https://navanchauhan.github.io/SwiftWebsite/feed.rss" rel="self" type="application/rss+xml"/><item><guid isPermaLink="true">https://navanchauhan.github.io/SwiftWebsite/posts/splitting-zips</guid><title>Splitting ZIPs into Multiple Parts</title><description>Short code snippet for splitting zips.</description><link>https://navanchauhan.github.io/SwiftWebsite/posts/splitting-zips</link><pubDate>Sun, 8 Dec 2019 13:27:00 +0530</pubDate><content:encoded><![CDATA[<h1>Splitting ZIPs into Multiple Parts</h1><p><strong>Tested on macOS</strong></p><p>Creating the archive:</p><pre><code>zip -r -s 5 oodlesofnoodles.zip website/
</code></pre><p>5 stands for each split files' size (in mb, kb and gb can also be specified)</p><p>For encrypting the zip:</p><pre><code>zip -er -s 5 oodlesofnoodles.zip website
</code></pre><p>Extracting Files</p><p>First we need to collect all parts, then</p><pre><code>zip -F oodlesofnoodles.zip --out merged.zip
-</code></pre>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/SwiftWebsite/tutorials/custom-image-classifier-keras-tensorflow</guid><title>Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria</title><description>Short tutorial for creating a custom image classifier using TF 2.0</description><link>https://navanchauhan.github.io/SwiftWebsite/tutorials/custom-image-classifier-keras-tensorflow</link><pubDate>Sun, 8 Dec 2019 11:27:00 +0530</pubDate><content:encoded><![CDATA[<h1>Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria</h1><p><strong>Done during Google Code-In. Org: Tensorflow.</strong></p><h2>Imports</h2><pre><code>%tensorflow_version 2.x #This is for telling Colab that you want to use TF 2.0, ignore if running on local machine
+</code></pre>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/SwiftWebsite/tutorials/custom-image-classifier-keras-tensorflow</guid><title>Creating a Custom Image Classifier using TensorFlow 2.x and Keras for Detecting Malaria</title><description>Short tutorial for creating a custom image classifier using TF 2.0</description><link>https://navanchauhan.github.io/SwiftWebsite/tutorials/custom-image-classifier-keras-tensorflow</link><pubDate>Sun, 8 Dec 2019 11:27:00 +0530</pubDate><content:encoded><![CDATA[<h1>Creating a Custom Image Classifier using TensorFlow 2.x and Keras for Detecting Malaria</h1><p><strong>Done during Google Code-In. Org: Tensorflow.</strong></p><h2>Imports</h2><pre><code>%tensorflow_version 2.x #This is for telling Colab that you want to use TF 2.0, ignore if running on local machine
from PIL import Image # We use the PIL Library to resize images
import numpy as np
@@ -61,7 +61,7 @@ model.add(layers.Dense(500,activation="relu"))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(2,activation="softmax"))#2 represent output layer neurons
model.summary()
-</code></pre><h3>Compiling Model</h3><p>We use the adam optimiser as it is an adaptive learning rate optimization algorithm that's been designed specifically for <em>training</em> deep neural networks, which means it changes its learning rate automaticaly to get the best results</p><pre><code>model.compile(optimizer="adam",
+</code></pre><h3>Compiling Model</h3><p>We use the Adam optimizer as it is an adaptive learning rate optimization algorithm that's been designed specifically for <em>training</em> deep neural networks, which means it changes its learning rate automatically to get the best results</p><pre><code>model.compile(optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
</code></pre><h3>Training Model</h3><p>We train the model for 10 epochs on the training data and then validate it using the testing data</p><pre><code>history = model.fit(X_train,y_train, epochs=10, validation_data=(X_test,y_test))