From 562c929cd8b75d08d8ca368e0400c70188cd35a4 Mon Sep 17 00:00:00 2001 From: Navan Chauhan Date: Sat, 4 Jan 2020 15:33:34 +0530 Subject: Publish deploy 2020-01-04 15:33 --- AlphaTheme/styles.css | 29 ++++++++++++++++------ feed.rss | 6 ++--- index.html | 2 +- sitemap.xml | 2 +- styles.css | 29 ++++++++++++++++------ tags/colab/index.html | 2 +- tags/tutorial/index.html | 2 +- .../index.html | 4 +-- tutorials/index.html | 2 +- 9 files changed, 54 insertions(+), 24 deletions(-) diff --git a/AlphaTheme/styles.css b/AlphaTheme/styles.css index 7d131ff..700a0de 100644 --- a/AlphaTheme/styles.css +++ b/AlphaTheme/styles.css @@ -14,7 +14,7 @@ body { background: #fff; color: #000; - font-family: Helvetica, Arial; + font-family: -apple-system, BlinkMacSystemFont; /*,Helvetica, Arial;*/ text-align: center; } @@ -40,12 +40,10 @@ header { height: 200px; } */ + header .wrapper { - padding: 0; - margin: 0; - max-width: none; - /* padding-top: 30px; - padding-bottom: 30px; */ + padding-top: 30px; + padding-bottom: 30px; text-align: center; } @@ -65,8 +63,16 @@ nav { nav li { display: inline-block; + background-color: #000; + color: #ddd; + padding: 4px 6px; + border-radius: 5px; + margin-right: 5px; +} +nav li:hover { + color: #000; + background-color: #ddd; } - h1 { margin-bottom: 20px; font-size: 2em; @@ -155,6 +161,15 @@ footer { header .site-name { color: #ddd; } + nav li { + background-color: #ddd; + color: #000; + + } + nav li:hover { + color: #ddd; + background-color: #000; + } .item-list > li { background-color: #333; diff --git a/feed.rss b/feed.rss index 54e0f89..5fec857 100644 --- a/feed.rss +++ b/feed.rss @@ -1,7 +1,7 @@ -Navan ChauhanI try to post tutorials, tips and tricks related to programming, designing and just some science stuffhttps://navanchauhan.github.io/SwiftWebsite/enSat, 4 Jan 2020 14:28:26 +0530Sat, 4 Jan 2020 14:28:26 +0530250https://navanchauhan.github.io/SwiftWebsite/posts/splitting-zipsSplitting ZIPs into Multiple PartsShort code snippet for splitting zips.https://navanchauhan.github.io/SwiftWebsite/posts/splitting-zipsSun, 8 Dec 2019 13:27:00 +0530Splitting ZIPs into Multiple Parts

Tested on macOS

Creating the archive:

zip -r -s 5 oodlesofnoodles.zip website/
+Navan ChauhanI try to post tutorials, tips and tricks related to programming, designing and just some science stuffhttps://navanchauhan.github.io/SwiftWebsite/enSat, 4 Jan 2020 14:57:36 +0530Sat, 4 Jan 2020 14:57:36 +0530250https://navanchauhan.github.io/SwiftWebsite/posts/splitting-zipsSplitting ZIPs into Multiple PartsShort code snippet for splitting zips.https://navanchauhan.github.io/SwiftWebsite/posts/splitting-zipsSun, 8 Dec 2019 13:27:00 +0530Splitting ZIPs into Multiple Parts

Tested on macOS

Creating the archive:

zip -r -s 5 oodlesofnoodles.zip website/
 

5 stands for each split files' size (in mb, kb and gb can also be specified)

For encrypting the zip:

zip -er -s 5 oodlesofnoodles.zip website
 

Extracting Files

First we need to collect all parts, then

zip -F oodlesofnoodles.zip --out merged.zip
-
]]>
https://navanchauhan.github.io/SwiftWebsite/tutorials/custom-image-classifier-keras-tensorflowCreating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting MalariaShort tutorial for creating a custom image classifier using TF 2.0https://navanchauhan.github.io/SwiftWebsite/tutorials/custom-image-classifier-keras-tensorflowSun, 8 Dec 2019 11:27:00 +0530Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria

Done during Google Code-In. Org: Tensorflow.

Imports

%tensorflow_version 2.x #This is for telling Colab that you want to use TF 2.0, ignore if running on local machine
+
]]>
https://navanchauhan.github.io/SwiftWebsite/tutorials/custom-image-classifier-keras-tensorflowCreating a Custom Image Classifier using TensorFlow 2.x and Keras for Detecting MalariaShort tutorial for creating a custom image classifier using TF 2.0https://navanchauhan.github.io/SwiftWebsite/tutorials/custom-image-classifier-keras-tensorflowSun, 8 Dec 2019 11:27:00 +0530Creating a Custom Image Classifier using TensorFlow 2.x and Keras for Detecting Malaria

Done during Google Code-In. Org: Tensorflow.

Imports

%tensorflow_version 2.x #This is for telling Colab that you want to use TF 2.0, ignore if running on local machine
 
 from PIL import Image # We use the PIL Library to resize images
 import numpy as np
@@ -61,7 +61,7 @@ model.add(layers.Dense(500,activation="relu"))
 model.add(layers.Dropout(0.2))
 model.add(layers.Dense(2,activation="softmax"))#2 represent output layer neurons
 model.summary()
-

Compiling Model

We use the adam optimiser as it is an adaptive learning rate optimization algorithm that's been designed specifically for training deep neural networks, which means it changes its learning rate automaticaly to get the best results

model.compile(optimizer="adam",
+

Compiling Model

We use the Adam optimizer as it is an adaptive learning rate optimization algorithm that's been designed specifically for training deep neural networks, which means it changes its learning rate automatically to get the best results

model.compile(optimizer="adam",
               loss="sparse_categorical_crossentropy",
              metrics=["accuracy"])
 

Training Model

We train the model for 10 epochs on the training data and then validate it using the testing data

history = model.fit(X_train,y_train, epochs=10, validation_data=(X_test,y_test))
diff --git a/index.html b/index.html
index 9246253..8b17584 100644
--- a/index.html
+++ b/index.html
@@ -1 +1 @@
-Hi | Navan Chauhan

Hi

I try to post tutorials, tips and tricks related to programming, designing and just some science stuff

Latest content

\ No newline at end of file +Hi | Navan Chauhan

Hi

I try to post tutorials, tips and tricks related to programming, designing and just some science stuff

Latest content

\ No newline at end of file diff --git a/sitemap.xml b/sitemap.xml index 7693c89..01a16ee 100644 --- a/sitemap.xml +++ b/sitemap.xml @@ -1 +1 @@ -https://navanchauhan.github.io/SwiftWebsite/postsdaily1.02020-01-01https://navanchauhan.github.io/SwiftWebsite/posts/splitting-zipsmonthly0.52020-01-02https://navanchauhan.github.io/SwiftWebsite/posts/hello-worldmonthly0.52020-01-02https://navanchauhan.github.io/SwiftWebsite/tutorialsdaily1.02020-01-01https://navanchauhan.github.io/SwiftWebsite/tutorials/custom-image-classifier-keras-tensorflowmonthly0.52020-01-01 \ No newline at end of file +https://navanchauhan.github.io/SwiftWebsite/postsdaily1.02020-01-01https://navanchauhan.github.io/SwiftWebsite/posts/splitting-zipsmonthly0.52020-01-04https://navanchauhan.github.io/SwiftWebsite/posts/hello-worldmonthly0.52020-01-02https://navanchauhan.github.io/SwiftWebsite/tutorialsdaily1.02020-01-01https://navanchauhan.github.io/SwiftWebsite/tutorials/custom-image-classifier-keras-tensorflowmonthly0.52020-01-04 \ No newline at end of file diff --git a/styles.css b/styles.css index 7d131ff..700a0de 100644 --- a/styles.css +++ b/styles.css @@ -14,7 +14,7 @@ body { background: #fff; color: #000; - font-family: Helvetica, Arial; + font-family: -apple-system, BlinkMacSystemFont; /*,Helvetica, Arial;*/ text-align: center; } @@ -40,12 +40,10 @@ header { height: 200px; } */ + header .wrapper { - padding: 0; - margin: 0; - max-width: none; - /* padding-top: 30px; - padding-bottom: 30px; */ + padding-top: 30px; + padding-bottom: 30px; text-align: center; } @@ -65,8 +63,16 @@ nav { nav li { display: inline-block; + background-color: #000; + color: #ddd; + padding: 4px 6px; + border-radius: 5px; + margin-right: 5px; +} +nav li:hover { + color: #000; + background-color: #ddd; } - h1 { margin-bottom: 20px; font-size: 2em; @@ -155,6 +161,15 @@ footer { header .site-name { color: #ddd; } + nav li { + background-color: #ddd; + color: #000; + + } + nav li:hover { + color: #ddd; + background-color: #000; + } .item-list > li { background-color: #333; diff --git a/tags/colab/index.html b/tags/colab/index.html index 3e63ad6..62a5d30 100644 --- a/tags/colab/index.html +++ b/tags/colab/index.html @@ -1 +1 @@ -Navan Chauhan

Tagged with colab

Browse all tags
\ No newline at end of file +Navan Chauhan

Tagged with colab

Browse all tags
\ No newline at end of file diff --git a/tags/tutorial/index.html b/tags/tutorial/index.html index 9bac7ed..881bb94 100644 --- a/tags/tutorial/index.html +++ b/tags/tutorial/index.html @@ -1 +1 @@ -Navan Chauhan

Tagged with tutorial

Browse all tags
\ No newline at end of file +Navan Chauhan

Tagged with tutorial

Browse all tags
\ No newline at end of file diff --git a/tutorials/custom-image-classifier-keras-tensorflow/index.html b/tutorials/custom-image-classifier-keras-tensorflow/index.html index 9ea32fe..c3518fd 100644 --- a/tutorials/custom-image-classifier-keras-tensorflow/index.html +++ b/tutorials/custom-image-classifier-keras-tensorflow/index.html @@ -1,4 +1,4 @@ -Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria | Navan Chauhan

Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria

Done during Google Code-In. Org: Tensorflow.

Imports

%tensorflow_version 2.x #This is for telling Colab that you want to use TF 2.0, ignore if running on local machine
+Creating a Custom Image Classifier using TensorFlow 2.x and Keras for Detecting Malaria | Navan Chauhan

Creating a Custom Image Classifier using TensorFlow 2.x and Keras for Detecting Malaria

Done during Google Code-In. Org: Tensorflow.

Imports

%tensorflow_version 2.x #This is for telling Colab that you want to use TF 2.0, ignore if running on local machine
 
 from PIL import Image # We use the PIL Library to resize images
 import numpy as np
@@ -58,7 +58,7 @@ model.add(layers.Dense(500,activation="relu"))
 model.add(layers.Dropout(0.2))
 model.add(layers.Dense(2,activation="softmax"))#2 represent output layer neurons
 model.summary()
-

Compiling Model

We use the adam optimiser as it is an adaptive learning rate optimization algorithm that's been designed specifically for training deep neural networks, which means it changes its learning rate automaticaly to get the best results

model.compile(optimizer="adam",
+

Compiling Model

We use the Adam optimizer as it is an adaptive learning rate optimization algorithm that's been designed specifically for training deep neural networks, which means it changes its learning rate automatically to get the best results

model.compile(optimizer="adam",
               loss="sparse_categorical_crossentropy",
              metrics=["accuracy"])
 

Training Model

We train the model for 10 epochs on the training data and then validate it using the testing data

history = model.fit(X_train,y_train, epochs=10, validation_data=(X_test,y_test))
diff --git a/tutorials/index.html b/tutorials/index.html
index a0cdf48..92794b8 100644
--- a/tutorials/index.html
+++ b/tutorials/index.html
@@ -1 +1 @@
-Tutorials | Navan Chauhan

Tutorials

\ No newline at end of file +Tutorials | Navan Chauhan

Tutorials

\ No newline at end of file -- cgit v1.2.3