From aae00025bd8bff04de90b22b2472aed8a232f476 Mon Sep 17 00:00:00 2001
From: Navan Chauhan
Date: Tue, 26 Mar 2024 18:21:29 -0600
Subject: post testing latex extra
---
.../2024-03-21-Polynomial-Regression-in-TensorFlow-2.html | 10 +++-------
1 file changed, 3 insertions(+), 7 deletions(-)
(limited to 'docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html')
diff --git a/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html b/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html
index 7a25daf..ab46ec7 100644
--- a/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html
+++ b/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html
@@ -107,9 +107,7 @@
-$$
-y = ax^3 + bx^2 + cx + d
-$$
+
Optimizer Selection & Training
@@ -134,9 +132,7 @@ $$
Our loss function is Mean Squared Error (MSE):
-$$
-= \frac{1}{n} \sum_{i=1}^{n}{(Y_i - \hat{Y_i})^2}
-$$
+
Where is the predicted value and is the actual value
@@ -276,7 +272,7 @@ $$
How would you modify this code to use another type of nonlinear regression? Say,
-$$ y = ab^x $$
+
Hint: Your loss calculation would be similar to:
--
cgit v1.2.3