From b484b8a672a907af87e73fe7006497a6ca86c259 Mon Sep 17 00:00:00 2001 From: Navan Chauhan Date: Thu, 21 Mar 2024 13:54:53 -0600 Subject: add polynomial regression for tf 2.0 --- ...3-21-Polynomial-Regression-in-TensorFlow-2.html | 311 +++++++++++++++++++++ 1 file changed, 311 insertions(+) create mode 100644 docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html (limited to 'docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html') diff --git a/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html b/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html new file mode 100644 index 0000000..c1a4ae4 --- /dev/null +++ b/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html @@ -0,0 +1,311 @@ + + + + + + + + + Polynomial Regression Using TensorFlow 2.x + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +

Polynomial Regression Using TensorFlow 2.x

+ +

I have a similar post titled Polynomial Regression Using Tensorflow that used tensorflow.compat.v1 (Which still works as of TF 2.16). But, I thought it would be nicer to redo it with newer TF versions.

+ +

I will be skipping all the introductions about polynomial regression and jumping straight to the code. Personally, I prefer using scikit-learn for this task.

+ +

Position vs Salary Dataset

+ +

Again, we will be using https://drive.google.com/file/d/1tNL4jxZEfpaP4oflfSn6pIHJX7Pachm9/view (Salary vs Position Dataset)

+ +

If you are in a Python Notebook environment like Kaggle or Google Colaboratory, you can simply run:

+ +
+
!wget --no-check-certificate 'https://docs.google.com/uc?export=download&id=1tNL4jxZEfpaP4oflfSn6pIHJX7Pachm9' -O data.csv
+
+
+ +

Code

+ +

If you just want to copy-paste the code, scroll to the bottom for the entire snippet. Here I will try and walk through setting up code for a 3rd-degree (cubic) polynomial

+ +

Imports

+ +
+
import pandas as pd
+import tensorflow as tf
+import matplotlib.pyplot as plt
+import numpy as np
+
+
+ +

Reading the Dataset

+ +
+
df = pd.read_csv("data.csv")
+
+
+ +

Variables and Constants

+ +

Here, we initialize the X and Y values as constants, since they are not going to change. The coefficients are defined as variables.

+ +
+
X = tf.constant(df["Level"], dtype=tf.float32)
+Y = tf.constant(df["Salary"], dtype=tf.float32)
+
+coefficients = [tf.Variable(np.random.randn() * 0.01, dtype=tf.float32) for _ in range(4)]
+
+
+ +

Here, X and Y are the values from our dataset. We initialize the coefficients for the equations as small random values.

+ +

These coefficients are evaluated by Tensorflow's tf.math.poyval function which returns the n-th order polynomial based on how many coefficients are passed. Since our list of coefficients contains 4 different variables, it will be evaluated as:

+ +
y = (x**3)*coefficients[3] + (x**2)*coefficients[2] + (x**1)*coefficients[1] (x**0)*coefficients[0]
+
+ +

Which is equivalent to the general cubic equation:

+ +

+ +$$ +y = ax^3 + bx^2 + cx + d +$$ + +### Optimizer Selection & Training +

+ +
optimizer = tf.keras.optimizers.Adam(learning_rate=0.3)
+num_epochs = 10_000
+
+for epoch in range(num_epochs):
+    with tf.GradientTape() as tape:
+        y_pred = tf.math.polyval(coefficients, X)
+        loss = tf.reduce_mean(tf.square(y - y_pred))
+    grads = tape.gradient(loss, coefficients)
+    optimizer.apply_gradients(zip(grads, coefficients))
+    if (epoch+1) % 1000 == 0:
+        print(f"Epoch: {epoch+1}, Loss: {loss.numpy()}"
+
+ +
+ + +In TensorFlow 1, we would have been using `tf.Session` instead. + +Here we are using `GradientTape()` instead, to keep track of the loss evaluation and coefficients. This is crucial, as our optimizer needs these gradients to be able to optimize our coefficients. + +Our loss function is Mean Squared Error (MSE) + +$$ += \frac{1}{n}\sum_{i=1}^{n} (Y_i - \^{Y_i}) +$$ + +Where $\^{Y_i}$ is the predicted value and $Y_i$ is the actual value + +### Plotting Final Coefficients +
+ +
final_coefficients = [c.numpy() for c in coefficients]
+print("Final Coefficients:", final_coefficients)
+
+plt.plot(df["Level"], df["Salary"], label="Original Data")
+plt.plot(df["Level"],[tf.math.polyval(final_coefficients, tf.constant(x, dtype=tf.float32)).numpy() for x in df["Level"]])
+plt.ylabel('Salary')
+plt.xlabel('Position')
+plt.title("Salary vs Position")
+plt.show()
+
+ +
+ + + +## Code Snippet for a Polynomial of Degree N + +### Using Gradient Tape + +This should work regardless of the Keras backend version (2 or 3) +
+ +
import tensorflow as tf
+import numpy as np
+import pandas as pd
+import matplotlib.pyplot as plt
+
+df = pd.read_csv("data.csv")
+
+############################
+## Change Parameters Here ##
+############################
+x_column = "Level"         #
+y_column = "Salary"        #
+degree = 2                 #
+learning_rate = 0.3        #
+num_epochs = 25_000        #
+############################
+
+X = tf.constant(df[x_column], dtype=tf.float32)
+Y = tf.constant(df[y_column], dtype=tf.float32)
+
+coefficients = [tf.Variable(np.random.randn() * 0.01, dtype=tf.float32) for _ in range(degree + 1)]
+
+optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
+
+for epoch in range(num_epochs):
+    with tf.GradientTape() as tape:
+        y_pred = tf.math.polyval(coefficients, X)
+        loss = tf.reduce_mean(tf.square(Y - y_pred))
+    grads = tape.gradient(loss, coefficients)
+    optimizer.apply_gradients(zip(grads, coefficients))
+    if (epoch+1) % 1000 == 0:
+        print(f"Epoch: {epoch+1}, Loss: {loss.numpy()}")
+
+final_coefficients = [c.numpy() for c in coefficients]
+print("Final Coefficients:", final_coefficients)
+
+print("Final Equation:", end=" ")
+for i in range(degree+1):
+  print(f"{final_coefficients[i]} * x^{degree-i}", end=" + " if i < degree else "\n")
+
+plt.plot(X, Y, label="Original Data")
+plt.plot(X,[tf.math.polyval(final_coefficients, tf.constant(x, dtype=tf.float32)).numpy() for x in df[x_column]]), label="Our Poynomial"
+plt.ylabel(y_column)
+plt.xlabel(x_column)
+plt.title(f"{x_column} vs {y_column}")
+plt.legend()
+plt.show()
+
+ +
+ + +### Without Gradient Tape + +This relies on the Optimizer's `minimize` function and uses the `var_list` parameter to update the variables. + +This will not work with Keras 3 backend in TF 2.16.0 and above unless you switch to the legacy backend. +
+ +
import tensorflow as tf
+import numpy as np
+import pandas as pd
+import matplotlib.pyplot as plt
+
+df = pd.read_csv("data.csv")
+
+############################
+## Change Parameters Here ##
+############################
+x_column = "Level"         #
+y_column = "Salary"        #
+degree = 2                 #
+learning_rate = 0.3        #
+num_epochs = 25_000        #
+############################
+
+X = tf.constant(df[x_column], dtype=tf.float32)
+Y = tf.constant(df[y_column], dtype=tf.float32)
+
+coefficients = [tf.Variable(np.random.randn() * 0.01, dtype=tf.float32) for _ in range(degree + 1)]
+
+optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
+
+def loss_function():
+  pred_y = tf.math.polyval(coefficients, X)
+  return tf.reduce_mean(tf.square(pred_y - Y))
+
+for epoch in range(num_epochs):
+    optimizer.minimize(loss_function, var_list=coefficients)
+    if (epoch+1) % 1000 == 0:
+        current_loss = loss_function().numpy()
+        print(f"Epoch {epoch+1}: Training Loss: {current_loss}")
+
+final_coefficients = coefficients.numpy()
+print("Final Coefficients:", final_coefficients)
+
+print("Final Equation:", end=" ")
+for i in range(degree+1):
+  print(f"{final_coefficients[i]} * x^{degree-i}", end=" + " if i < degree else "\n")
+
+plt.plot(X, Y, label="Original Data")
+plt.plot(X,[tf.math.polyval(final_coefficients, tf.constant(x, dtype=tf.float32)).numpy() for x in df[x_column]], label="Our Polynomial")
+plt.ylabel(y_column)
+plt.xlabel(x_column)
+plt.legend()
+plt.title(f"{x_column} vs {y_column}")
+plt.show()
+
+ +
+ + + +As always, remember to tweak the parameters and choose the correct model for the job. A polynomial regression model might not even be the best model for this particular dataset. + +## Further Programming + +How would you modify this code to use another type of nonlinear regression? Say, $ y = ab^x $ + +Hint: Your loss calculation would be similar to: +
+ +
bx = tf.pow(coefficients[1], X)
+pred_y = tf.math.multiply(coefficients[0], bx)
+loss = tf.reduce_mean(tf.square(pred_y - Y))
+
+ +

+ +
If you have scrolled this far, consider subscribing to my mailing list here. You can subscribe to either a specific type of post you are interested in, or subscribe to everything with the "Everything" list.
+ +
+ +
+
+ + + + + \ No newline at end of file -- cgit v1.2.3