From 81ae1cfaf44f9f188e35936a660e82a4e9af238e Mon Sep 17 00:00:00 2001 From: Navan Chauhan Date: Tue, 14 Jan 2020 23:03:43 +0530 Subject: Publish deploy 2020-01-14 23:03 --- .../index.html | 101 +++++++++++++++++++++ 1 file changed, 101 insertions(+) create mode 100644 posts/2019-12-08-Image-Classifier-Tensorflow/index.html (limited to 'posts/2019-12-08-Image-Classifier-Tensorflow/index.html') diff --git a/posts/2019-12-08-Image-Classifier-Tensorflow/index.html b/posts/2019-12-08-Image-Classifier-Tensorflow/index.html new file mode 100644 index 0000000..88c5e2e --- /dev/null +++ b/posts/2019-12-08-Image-Classifier-Tensorflow/index.html @@ -0,0 +1,101 @@ +Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria | Navan Chauhan
🕑 3 minute read.

Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria

Done during Google Code-In. Org: Tensorflow.

Imports

%tensorflow_version 2.x #This is for telling Colab that you want to use TF 2.0, ignore if running on local machine
+
+from PIL import Image # We use the PIL Library to resize images
+import numpy as np
+import os
+import cv2
+import tensorflow as tf
+from tensorflow.keras import datasets, layers, models
+import pandas as pd
+import matplotlib.pyplot as plt
+from keras.models import Sequential
+from keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout
+

Dataset

Fetching the Data

!wget ftp://lhcftp.nlm.nih.gov/Open-Access-Datasets/Malaria/cell_images.zip
+!unzip cell_images.zip
+

Processing the Data

We resize all the images as 50x50 and add the numpy array of that image as well as their label names (Infected or Not) to common arrays.

data = []
+labels = []
+
+Parasitized = os.listdir("./cell_images/Parasitized/")
+for parasite in Parasitized:
+    try:
+        image=cv2.imread("./cell_images/Parasitized/"+parasite)
+        image_from_array = Image.fromarray(image, 'RGB')
+        size_image = image_from_array.resize((50, 50))
+        data.append(np.array(size_image))
+        labels.append(0)
+    except AttributeError:
+        print("")
+
+Uninfected = os.listdir("./cell_images/Uninfected/")
+for uninfect in Uninfected:
+    try:
+        image=cv2.imread("./cell_images/Uninfected/"+uninfect)
+        image_from_array = Image.fromarray(image, 'RGB')
+        size_image = image_from_array.resize((50, 50))
+        data.append(np.array(size_image))
+        labels.append(1)
+    except AttributeError:
+        print("")
+

Splitting Data

df = np.array(data)
+labels = np.array(labels)
+(X_train, X_test) = df[(int)(0.1*len(df)):],df[:(int)(0.1*len(df))]
+(y_train, y_test) = labels[(int)(0.1*len(labels)):],labels[:(int)(0.1*len(labels))]
+
s=np.arange(X_train.shape[0])
+np.random.shuffle(s)
+X_train=X_train[s]
+y_train=y_train[s]
+X_train = X_train/255.0
+

Model

Creating Model

By creating a sequential model, we create a linear stack of layers.

Note: The input shape for the first layer is 50,50 which corresponds with the sizes of the resized images

model = models.Sequential()
+model.add(layers.Conv2D(filters=16, kernel_size=2, padding='same', activation='relu', input_shape=(50,50,3)))
+model.add(layers.MaxPooling2D(pool_size=2))
+model.add(layers.Conv2D(filters=32,kernel_size=2,padding='same',activation='relu'))
+model.add(layers.MaxPooling2D(pool_size=2))
+model.add(layers.Conv2D(filters=64,kernel_size=2,padding="same",activation="relu"))
+model.add(layers.MaxPooling2D(pool_size=2))
+model.add(layers.Dropout(0.2))
+model.add(layers.Flatten())
+model.add(layers.Dense(500,activation="relu"))
+model.add(layers.Dropout(0.2))
+model.add(layers.Dense(2,activation="softmax"))#2 represent output layer neurons 
+model.summary()
+

Compiling Model

We use the adam optimiser as it is an adaptive learning rate optimization algorithm that's been designed specifically for training deep neural networks, which means it changes its learning rate automaticaly to get the best results

model.compile(optimizer="adam",
+              loss="sparse_categorical_crossentropy", 
+             metrics=["accuracy"])
+

Training Model

We train the model for 10 epochs on the training data and then validate it using the testing data

history = model.fit(X_train,y_train, epochs=10, validation_data=(X_test,y_test))
+
Train on 24803 samples, validate on 2755 samples
+Epoch 1/10
+24803/24803 [==============================] - 57s 2ms/sample - loss: 0.0786 - accuracy: 0.9729 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
+Epoch 2/10
+24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0746 - accuracy: 0.9731 - val_loss: 0.0290 - val_accuracy: 0.9996
+Epoch 3/10
+24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0672 - accuracy: 0.9764 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
+Epoch 4/10
+24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0601 - accuracy: 0.9789 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
+Epoch 5/10
+24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0558 - accuracy: 0.9804 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
+Epoch 6/10
+24803/24803 [==============================] - 57s 2ms/sample - loss: 0.0513 - accuracy: 0.9819 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
+Epoch 7/10
+24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0452 - accuracy: 0.9849 - val_loss: 0.3190 - val_accuracy: 0.9985
+Epoch 8/10
+24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0404 - accuracy: 0.9858 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
+Epoch 9/10
+24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0352 - accuracy: 0.9878 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
+Epoch 10/10
+24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0373 - accuracy: 0.9865 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
+

Results

accuracy = history.history['accuracy'][-1]*100
+loss = history.history['loss'][-1]*100
+val_accuracy = history.history['val_accuracy'][-1]*100
+val_loss = history.history['val_loss'][-1]*100
+
+print(
+    'Accuracy:', accuracy,
+    '\nLoss:', loss,
+    '\nValidation Accuracy:', val_accuracy,
+    '\nValidation Loss:', val_loss
+)
+
Accuracy: 98.64532351493835 
+Loss: 3.732407123270176 
+Validation Accuracy: 100.0 
+Validation Loss: 0.0
+

We have achieved 98% Accuracy!

Link to Colab Notebook

Tagged with:
\ No newline at end of file -- cgit v1.2.3