From 3307f004b0b41e6d1b1f526f6f9f60204b5fa2fe Mon Sep 17 00:00:00 2001 From: Navan Chauhan Date: Tue, 14 Jan 2020 23:14:54 +0530 Subject: Publish deploy 2020-01-14 23:14 --- posts/2019-12-10-TensorFlow-Model-Prediction/index.html | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'posts/2019-12-10-TensorFlow-Model-Prediction/index.html') diff --git a/posts/2019-12-10-TensorFlow-Model-Prediction/index.html b/posts/2019-12-10-TensorFlow-Model-Prediction/index.html index daab780..aa51948 100644 --- a/posts/2019-12-10-TensorFlow-Model-Prediction/index.html +++ b/posts/2019-12-10-TensorFlow-Model-Prediction/index.html @@ -1,4 +1,4 @@ -Making Predictions using Image Classifier (TensorFlow) | Navan Chauhan
🕑 1 minute read.

Making Predictions using Image Classifier (TensorFlow)

This was tested on TF 2.x and works as of 2019-12-10

If you want to understand how to make your own custom image classifier, please refer to my previous post.

If you followed my last post, then you created a model which took an image of dimensions 50x50 as an input.

First we import the following if we have not imported these before

import cv2
+Making Predictions using Image Classifier (TensorFlow) | Navan Chauhan
🕑 1 minute read.

Making Predictions using Image Classifier (TensorFlow)

This was tested on TF 2.x and works as of 2019-12-10

If you want to understand how to make your own custom image classifier, please refer to my previous post.

If you followed my last post, then you created a model which took an image of dimensions 50x50 as an input.

First we import the following if we have not imported these before

import cv2
 import os
 

Then we read the file using OpenCV.

image=cv2.imread(imagePath)
 

The cv2. imread() function returns a NumPy array representing the image. Therefore, we need to convert it before we can use it.

image_from_array = Image.fromarray(image, 'RGB')
-- 
cgit v1.2.3