From 8c33e4c27265f0a213a3b10145204bb3ea539a47 Mon Sep 17 00:00:00 2001 From: Navan Chauhan Date: Tue, 3 Mar 2020 18:59:10 +0530 Subject: Publish deploy 2020-03-03 18:59 --- .../index 2.html | 213 --------------------- .../index 5.html | 213 --------------------- 2 files changed, 426 deletions(-) delete mode 100644 posts/2020-01-16-Image-Classifier-Using-Turicreate/index 2.html delete mode 100644 posts/2020-01-16-Image-Classifier-Using-Turicreate/index 5.html (limited to 'posts/2020-01-16-Image-Classifier-Using-Turicreate') diff --git a/posts/2020-01-16-Image-Classifier-Using-Turicreate/index 2.html b/posts/2020-01-16-Image-Classifier-Using-Turicreate/index 2.html deleted file mode 100644 index 187a8d2..0000000 --- a/posts/2020-01-16-Image-Classifier-Using-Turicreate/index 2.html +++ /dev/null @@ -1,213 +0,0 @@ -Creating a Custom Image Classifier using Turicreate to detect Smoke and Fire | Navan Chauhan
6 minute readCreated on January 16, 2020Last modified on January 19, 2020

Creating a Custom Image Classifier using Turicreate to detect Smoke and Fire

For setting up Kaggle with Google Colab, please refer to my previous post

Dataset

Mounting Google Drive

import os -from google.colab import drive -drive.mount('/content/drive') -
- -

Downloading Dataset from Kaggle

os.environ['KAGGLE_CONFIG_DIR'] = "/content/drive/My Drive/" -!kaggle datasets download ashutosh69/fire-and-smoke-dataset -!unzip "fire-and-smoke-dataset.zip" -
- -

Pre-Processing

!mkdir default smoke fire -
- -


!ls data/data/img_data/train/default/*.jpg -
- -


img_1002.jpg img_20.jpg img_519.jpg img_604.jpg img_80.jpg -img_1003.jpg img_21.jpg img_51.jpg img_60.jpg img_8.jpg -img_1007.jpg img_22.jpg img_520.jpg img_61.jpg img_900.jpg -img_100.jpg img_23.jpg img_521.jpg 'img_62 (2).jpg' img_920.jpg -img_1014.jpg img_24.jpg 'img_52 (2).jpg' img_62.jpg img_921.jpg -img_1018.jpg img_29.jpg img_522.jpg 'img_63 (2).jpg' img_922.jpg -img_101.jpg img_3000.jpg img_523.jpg img_63.jpg img_923.jpg -img_1027.jpg img_335.jpg img_524.jpg img_66.jpg img_924.jpg -img_102.jpg img_336.jpg img_52.jpg img_67.jpg img_925.jpg -img_1042.jpg img_337.jpg img_530.jpg img_68.jpg img_926.jpg -img_1043.jpg img_338.jpg img_531.jpg img_700.jpg img_927.jpg -img_1046.jpg img_339.jpg 'img_53 (2).jpg' img_701.jpg img_928.jpg -img_1052.jpg img_340.jpg img_532.jpg img_702.jpg img_929.jpg -img_107.jpg img_341.jpg img_533.jpg img_703.jpg img_930.jpg -img_108.jpg img_3.jpg img_537.jpg img_704.jpg img_931.jpg -img_109.jpg img_400.jpg img_538.jpg img_705.jpg img_932.jpg -img_10.jpg img_471.jpg img_539.jpg img_706.jpg img_933.jpg -img_118.jpg img_472.jpg img_53.jpg img_707.jpg img_934.jpg -img_12.jpg img_473.jpg img_540.jpg img_708.jpg img_935.jpg -img_14.jpg img_488.jpg img_541.jpg img_709.jpg img_938.jpg -img_15.jpg img_489.jpg 'img_54 (2).jpg' img_70.jpg img_958.jpg -img_16.jpg img_490.jpg img_542.jpg img_710.jpg img_971.jpg -img_17.jpg img_491.jpg img_543.jpg 'img_71 (2).jpg' img_972.jpg -img_18.jpg img_492.jpg img_54.jpg img_71.jpg img_973.jpg -img_19.jpg img_493.jpg 'img_55 (2).jpg' img_72.jpg img_974.jpg -img_1.jpg img_494.jpg img_55.jpg img_73.jpg img_975.jpg -img_200.jpg img_495.jpg img_56.jpg img_74.jpg img_980.jpg -img_201.jpg img_496.jpg img_57.jpg img_75.jpg img_988.jpg -img_202.jpg img_497.jpg img_58.jpg img_76.jpg img_9.jpg -img_203.jpg img_4.jpg img_59.jpg img_77.jpg -img_204.jpg img_501.jpg img_601.jpg img_78.jpg -img_205.jpg img_502.jpg img_602.jpg img_79.jpg -img_206.jpg img_50.jpg img_603.jpg img_7.jpg -
- -

The image files are not actually JPEG, thus we first need to save them in the correct format for Turicreate

from PIL import Image -import glob - - -folders = ["default","smoke","fire"] -for folder in folders: - n = 1 - for file in glob.glob("./data/data/img_data/train/" + folder + "/*.jpg"): - im = Image.open(file) - rgb_im = im.convert('RGB') - rgb_im.save((folder + "/" + str(n) + ".jpg"), quality=100) - n +=1 - for file in glob.glob("./data/data/img_data/train/" + folder + "/*.jpg"): - im = Image.open(file) - rgb_im = im.convert('RGB') - rgb_im.save((folder + "/" + str(n) + ".jpg"), quality=100) - n +=1 -
- -


!mkdir train -!mv default ./train -!mv smoke ./train -!mv fire ./train -
- -

Making the Image Classifier

Making an SFrame

!pip install turicreate -
- -


import turicreate as tc -import os - -data = tc.image_analysis.load_images("./train", with_path=True) - -data["label"] = data["path"].apply(lambda path: os.path.basename(os.path.dirname(path))) - -print(data) - -data.save('fire-smoke.sframe') -
- -


+-------------------------+------------------------+ -| path | image | -+-------------------------+------------------------+ -| ./train/default/1.jpg | Height: 224 Width: 224 | -| ./train/default/10.jpg | Height: 224 Width: 224 | -| ./train/default/100.jpg | Height: 224 Width: 224 | -| ./train/default/101.jpg | Height: 224 Width: 224 | -| ./train/default/102.jpg | Height: 224 Width: 224 | -| ./train/default/103.jpg | Height: 224 Width: 224 | -| ./train/default/104.jpg | Height: 224 Width: 224 | -| ./train/default/105.jpg | Height: 224 Width: 224 | -| ./train/default/106.jpg | Height: 224 Width: 224 | -| ./train/default/107.jpg | Height: 224 Width: 224 | -+-------------------------+------------------------+ -[2028 rows x 2 columns] -Note: Only the head of the SFrame is printed. -You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns. -+-------------------------+------------------------+---------+ -| path | image | label | -+-------------------------+------------------------+---------+ -| ./train/default/1.jpg | Height: 224 Width: 224 | default | -| ./train/default/10.jpg | Height: 224 Width: 224 | default | -| ./train/default/100.jpg | Height: 224 Width: 224 | default | -| ./train/default/101.jpg | Height: 224 Width: 224 | default | -| ./train/default/102.jpg | Height: 224 Width: 224 | default | -| ./train/default/103.jpg | Height: 224 Width: 224 | default | -| ./train/default/104.jpg | Height: 224 Width: 224 | default | -| ./train/default/105.jpg | Height: 224 Width: 224 | default | -| ./train/default/106.jpg | Height: 224 Width: 224 | default | -| ./train/default/107.jpg | Height: 224 Width: 224 | default | -+-------------------------+------------------------+---------+ -[2028 rows x 3 columns] -Note: Only the head of the SFrame is printed. -You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns. -
- -

Making the Model

import turicreate as tc - -# Load the data -data = tc.SFrame('fire-smoke.sframe') - -# Make a train-test split -train_data, test_data = data.random_split(0.8) - -# Create the model -model = tc.image_classifier.create(train_data, target='label') - -# Save predictions to an SArray -predictions = model.predict(test_data) - -# Evaluate the model and print the results -metrics = model.evaluate(test_data) -print(metrics['accuracy']) - -# Save the model for later use in Turi Create -model.save('fire-smoke.model') - -# Export for use in Core ML -model.export_coreml('fire-smoke.mlmodel') -
- -


Performing feature extraction on resized images... -Completed 64/1633 -Completed 128/1633 -Completed 192/1633 -Completed 256/1633 -Completed 320/1633 -Completed 384/1633 -Completed 448/1633 -Completed 512/1633 -Completed 576/1633 -Completed 640/1633 -Completed 704/1633 -Completed 768/1633 -Completed 832/1633 -Completed 896/1633 -Completed 960/1633 -Completed 1024/1633 -Completed 1088/1633 -Completed 1152/1633 -Completed 1216/1633 -Completed 1280/1633 -Completed 1344/1633 -Completed 1408/1633 -Completed 1472/1633 -Completed 1536/1633 -Completed 1600/1633 -Completed 1633/1633 -PROGRESS: Creating a validation set from 5 percent of training data. This may take a while. - You can set ``validation_set=None`` to disable validation tracking. - -Logistic regression: --------------------------------------------------------- -Number of examples : 1551 -Number of classes : 3 -Number of feature columns : 1 -Number of unpacked features : 2048 -Number of coefficients : 4098 -Starting L-BFGS --------------------------------------------------------- -+-----------+----------+-----------+--------------+-------------------+---------------------+ -| Iteration | Passes | Step size | Elapsed Time | Training Accuracy | Validation Accuracy | -+-----------+----------+-----------+--------------+-------------------+---------------------+ -| 0 | 6 | 0.018611 | 0.891830 | 0.553836 | 0.560976 | -| 1 | 10 | 0.390832 | 1.622383 | 0.744681 | 0.792683 | -| 2 | 11 | 0.488541 | 1.943987 | 0.733075 | 0.804878 | -| 3 | 14 | 2.442703 | 2.512545 | 0.727917 | 0.841463 | -| 4 | 15 | 2.442703 | 2.826964 | 0.861380 | 0.853659 | -| 9 | 28 | 2.340435 | 5.492035 | 0.941328 | 0.975610 | -+-----------+----------+-----------+--------------+-------------------+---------------------+ -Performing feature extraction on resized images... -Completed 64/395 -Completed 128/395 -Completed 192/395 -Completed 256/395 -Completed 320/395 -Completed 384/395 -Completed 395/395 -0.9316455696202531 -
- -

We just got an accuracy of 94% on Training Data and 97% on Validation Data!

Tagged with:
\ No newline at end of file diff --git a/posts/2020-01-16-Image-Classifier-Using-Turicreate/index 5.html b/posts/2020-01-16-Image-Classifier-Using-Turicreate/index 5.html deleted file mode 100644 index 187a8d2..0000000 --- a/posts/2020-01-16-Image-Classifier-Using-Turicreate/index 5.html +++ /dev/null @@ -1,213 +0,0 @@ -Creating a Custom Image Classifier using Turicreate to detect Smoke and Fire | Navan Chauhan
6 minute readCreated on January 16, 2020Last modified on January 19, 2020

Creating a Custom Image Classifier using Turicreate to detect Smoke and Fire

For setting up Kaggle with Google Colab, please refer to my previous post

Dataset

Mounting Google Drive

import os -from google.colab import drive -drive.mount('/content/drive') -
- -

Downloading Dataset from Kaggle

os.environ['KAGGLE_CONFIG_DIR'] = "/content/drive/My Drive/" -!kaggle datasets download ashutosh69/fire-and-smoke-dataset -!unzip "fire-and-smoke-dataset.zip" -
- -

Pre-Processing

!mkdir default smoke fire -
- -


!ls data/data/img_data/train/default/*.jpg -
- -


img_1002.jpg img_20.jpg img_519.jpg img_604.jpg img_80.jpg -img_1003.jpg img_21.jpg img_51.jpg img_60.jpg img_8.jpg -img_1007.jpg img_22.jpg img_520.jpg img_61.jpg img_900.jpg -img_100.jpg img_23.jpg img_521.jpg 'img_62 (2).jpg' img_920.jpg -img_1014.jpg img_24.jpg 'img_52 (2).jpg' img_62.jpg img_921.jpg -img_1018.jpg img_29.jpg img_522.jpg 'img_63 (2).jpg' img_922.jpg -img_101.jpg img_3000.jpg img_523.jpg img_63.jpg img_923.jpg -img_1027.jpg img_335.jpg img_524.jpg img_66.jpg img_924.jpg -img_102.jpg img_336.jpg img_52.jpg img_67.jpg img_925.jpg -img_1042.jpg img_337.jpg img_530.jpg img_68.jpg img_926.jpg -img_1043.jpg img_338.jpg img_531.jpg img_700.jpg img_927.jpg -img_1046.jpg img_339.jpg 'img_53 (2).jpg' img_701.jpg img_928.jpg -img_1052.jpg img_340.jpg img_532.jpg img_702.jpg img_929.jpg -img_107.jpg img_341.jpg img_533.jpg img_703.jpg img_930.jpg -img_108.jpg img_3.jpg img_537.jpg img_704.jpg img_931.jpg -img_109.jpg img_400.jpg img_538.jpg img_705.jpg img_932.jpg -img_10.jpg img_471.jpg img_539.jpg img_706.jpg img_933.jpg -img_118.jpg img_472.jpg img_53.jpg img_707.jpg img_934.jpg -img_12.jpg img_473.jpg img_540.jpg img_708.jpg img_935.jpg -img_14.jpg img_488.jpg img_541.jpg img_709.jpg img_938.jpg -img_15.jpg img_489.jpg 'img_54 (2).jpg' img_70.jpg img_958.jpg -img_16.jpg img_490.jpg img_542.jpg img_710.jpg img_971.jpg -img_17.jpg img_491.jpg img_543.jpg 'img_71 (2).jpg' img_972.jpg -img_18.jpg img_492.jpg img_54.jpg img_71.jpg img_973.jpg -img_19.jpg img_493.jpg 'img_55 (2).jpg' img_72.jpg img_974.jpg -img_1.jpg img_494.jpg img_55.jpg img_73.jpg img_975.jpg -img_200.jpg img_495.jpg img_56.jpg img_74.jpg img_980.jpg -img_201.jpg img_496.jpg img_57.jpg img_75.jpg img_988.jpg -img_202.jpg img_497.jpg img_58.jpg img_76.jpg img_9.jpg -img_203.jpg img_4.jpg img_59.jpg img_77.jpg -img_204.jpg img_501.jpg img_601.jpg img_78.jpg -img_205.jpg img_502.jpg img_602.jpg img_79.jpg -img_206.jpg img_50.jpg img_603.jpg img_7.jpg -
- -

The image files are not actually JPEG, thus we first need to save them in the correct format for Turicreate

from PIL import Image -import glob - - -folders = ["default","smoke","fire"] -for folder in folders: - n = 1 - for file in glob.glob("./data/data/img_data/train/" + folder + "/*.jpg"): - im = Image.open(file) - rgb_im = im.convert('RGB') - rgb_im.save((folder + "/" + str(n) + ".jpg"), quality=100) - n +=1 - for file in glob.glob("./data/data/img_data/train/" + folder + "/*.jpg"): - im = Image.open(file) - rgb_im = im.convert('RGB') - rgb_im.save((folder + "/" + str(n) + ".jpg"), quality=100) - n +=1 -
- -


!mkdir train -!mv default ./train -!mv smoke ./train -!mv fire ./train -
- -

Making the Image Classifier

Making an SFrame

!pip install turicreate -
- -


import turicreate as tc -import os - -data = tc.image_analysis.load_images("./train", with_path=True) - -data["label"] = data["path"].apply(lambda path: os.path.basename(os.path.dirname(path))) - -print(data) - -data.save('fire-smoke.sframe') -
- -


+-------------------------+------------------------+ -| path | image | -+-------------------------+------------------------+ -| ./train/default/1.jpg | Height: 224 Width: 224 | -| ./train/default/10.jpg | Height: 224 Width: 224 | -| ./train/default/100.jpg | Height: 224 Width: 224 | -| ./train/default/101.jpg | Height: 224 Width: 224 | -| ./train/default/102.jpg | Height: 224 Width: 224 | -| ./train/default/103.jpg | Height: 224 Width: 224 | -| ./train/default/104.jpg | Height: 224 Width: 224 | -| ./train/default/105.jpg | Height: 224 Width: 224 | -| ./train/default/106.jpg | Height: 224 Width: 224 | -| ./train/default/107.jpg | Height: 224 Width: 224 | -+-------------------------+------------------------+ -[2028 rows x 2 columns] -Note: Only the head of the SFrame is printed. -You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns. -+-------------------------+------------------------+---------+ -| path | image | label | -+-------------------------+------------------------+---------+ -| ./train/default/1.jpg | Height: 224 Width: 224 | default | -| ./train/default/10.jpg | Height: 224 Width: 224 | default | -| ./train/default/100.jpg | Height: 224 Width: 224 | default | -| ./train/default/101.jpg | Height: 224 Width: 224 | default | -| ./train/default/102.jpg | Height: 224 Width: 224 | default | -| ./train/default/103.jpg | Height: 224 Width: 224 | default | -| ./train/default/104.jpg | Height: 224 Width: 224 | default | -| ./train/default/105.jpg | Height: 224 Width: 224 | default | -| ./train/default/106.jpg | Height: 224 Width: 224 | default | -| ./train/default/107.jpg | Height: 224 Width: 224 | default | -+-------------------------+------------------------+---------+ -[2028 rows x 3 columns] -Note: Only the head of the SFrame is printed. -You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns. -
- -

Making the Model

import turicreate as tc - -# Load the data -data = tc.SFrame('fire-smoke.sframe') - -# Make a train-test split -train_data, test_data = data.random_split(0.8) - -# Create the model -model = tc.image_classifier.create(train_data, target='label') - -# Save predictions to an SArray -predictions = model.predict(test_data) - -# Evaluate the model and print the results -metrics = model.evaluate(test_data) -print(metrics['accuracy']) - -# Save the model for later use in Turi Create -model.save('fire-smoke.model') - -# Export for use in Core ML -model.export_coreml('fire-smoke.mlmodel') -
- -


Performing feature extraction on resized images... -Completed 64/1633 -Completed 128/1633 -Completed 192/1633 -Completed 256/1633 -Completed 320/1633 -Completed 384/1633 -Completed 448/1633 -Completed 512/1633 -Completed 576/1633 -Completed 640/1633 -Completed 704/1633 -Completed 768/1633 -Completed 832/1633 -Completed 896/1633 -Completed 960/1633 -Completed 1024/1633 -Completed 1088/1633 -Completed 1152/1633 -Completed 1216/1633 -Completed 1280/1633 -Completed 1344/1633 -Completed 1408/1633 -Completed 1472/1633 -Completed 1536/1633 -Completed 1600/1633 -Completed 1633/1633 -PROGRESS: Creating a validation set from 5 percent of training data. This may take a while. - You can set ``validation_set=None`` to disable validation tracking. - -Logistic regression: --------------------------------------------------------- -Number of examples : 1551 -Number of classes : 3 -Number of feature columns : 1 -Number of unpacked features : 2048 -Number of coefficients : 4098 -Starting L-BFGS --------------------------------------------------------- -+-----------+----------+-----------+--------------+-------------------+---------------------+ -| Iteration | Passes | Step size | Elapsed Time | Training Accuracy | Validation Accuracy | -+-----------+----------+-----------+--------------+-------------------+---------------------+ -| 0 | 6 | 0.018611 | 0.891830 | 0.553836 | 0.560976 | -| 1 | 10 | 0.390832 | 1.622383 | 0.744681 | 0.792683 | -| 2 | 11 | 0.488541 | 1.943987 | 0.733075 | 0.804878 | -| 3 | 14 | 2.442703 | 2.512545 | 0.727917 | 0.841463 | -| 4 | 15 | 2.442703 | 2.826964 | 0.861380 | 0.853659 | -| 9 | 28 | 2.340435 | 5.492035 | 0.941328 | 0.975610 | -+-----------+----------+-----------+--------------+-------------------+---------------------+ -Performing feature extraction on resized images... -Completed 64/395 -Completed 128/395 -Completed 192/395 -Completed 256/395 -Completed 320/395 -Completed 384/395 -Completed 395/395 -0.9316455696202531 -
- -

We just got an accuracy of 94% on Training Data and 97% on Validation Data!

Tagged with:
\ No newline at end of file -- cgit v1.2.3