From aef09ef3f7d0fe16de6d70bc64d49123ccac6741 Mon Sep 17 00:00:00 2001 From: Navan Chauhan Date: Sat, 18 Jan 2020 20:15:32 +0530 Subject: Publish deploy 2020-01-18 20:15 --- posts/2019-12-08-Image-Classifier-Tensorflow/index.html | 2 +- posts/2019-12-08-Splitting-Zips/index.html | 2 +- posts/2019-12-10-TensorFlow-Model-Prediction/index.html | 2 +- posts/2019-12-16-TensorFlow-Polynomial-Regression/index.html | 2 +- posts/2019-12-22-Fake-News-Detector/index.html | 2 +- posts/2020-01-14-Converting-between-PIL-NumPy/index.html | 2 +- posts/hello-world/index.html | 2 +- posts/index.html | 2 +- 8 files changed, 8 insertions(+), 8 deletions(-) (limited to 'posts') diff --git a/posts/2019-12-08-Image-Classifier-Tensorflow/index.html b/posts/2019-12-08-Image-Classifier-Tensorflow/index.html index c835a5e..457cfde 100644 --- a/posts/2019-12-08-Image-Classifier-Tensorflow/index.html +++ b/posts/2019-12-08-Image-Classifier-Tensorflow/index.html @@ -1,4 +1,4 @@ -Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria | Navan Chauhan
🕑 4 minute read.

Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria

Done during Google Code-In. Org: Tensorflow.

Imports

%tensorflow_version 2.x #This is for telling Colab that you want to use TF 2.0, ignore if running on local machine +Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria | Navan Chauhan
🕑 4 minute read.

Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria

Done during Google Code-In. Org: Tensorflow.

Imports

%tensorflow_version 2.x #This is for telling Colab that you want to use TF 2.0, ignore if running on local machine from PIL import Image # We use the PIL Library to resize images import numpy as np diff --git a/posts/2019-12-08-Splitting-Zips/index.html b/posts/2019-12-08-Splitting-Zips/index.html index 35c3998..ad7ea78 100644 --- a/posts/2019-12-08-Splitting-Zips/index.html +++ b/posts/2019-12-08-Splitting-Zips/index.html @@ -1,4 +1,4 @@ -Splitting ZIPs into Multiple Parts | Navan Chauhan
🕑 0 minute read.

Splitting ZIPs into Multiple Parts

Tested on macOS

Creating the archive:

zip -r -s 5 oodlesofnoodles.zip website/ +Splitting ZIPs into Multiple Parts | Navan Chauhan
🕑 0 minute read.

Splitting ZIPs into Multiple Parts

Tested on macOS

Creating the archive:

zip -r -s 5 oodlesofnoodles.zip website/

5 stands for each split files' size (in mb, kb and gb can also be specified)

For encrypting the zip:

zip -er -s 5 oodlesofnoodles.zip website diff --git a/posts/2019-12-10-TensorFlow-Model-Prediction/index.html b/posts/2019-12-10-TensorFlow-Model-Prediction/index.html index 24da573..5a31966 100644 --- a/posts/2019-12-10-TensorFlow-Model-Prediction/index.html +++ b/posts/2019-12-10-TensorFlow-Model-Prediction/index.html @@ -1,4 +1,4 @@ -Making Predictions using Image Classifier (TensorFlow) | Navan Chauhan
🕑 1 minute read.

Making Predictions using Image Classifier (TensorFlow)

This was tested on TF 2.x and works as of 2019-12-10

If you want to understand how to make your own custom image classifier, please refer to my previous post.

If you followed my last post, then you created a model which took an image of dimensions 50x50 as an input.

First we import the following if we have not imported these before

import cv2 +Making Predictions using Image Classifier (TensorFlow) | Navan Chauhan
🕑 1 minute read.

Making Predictions using Image Classifier (TensorFlow)

This was tested on TF 2.x and works as of 2019-12-10

If you want to understand how to make your own custom image classifier, please refer to my previous post.

If you followed my last post, then you created a model which took an image of dimensions 50x50 as an input.

First we import the following if we have not imported these before

import cv2 import os
diff --git a/posts/2019-12-16-TensorFlow-Polynomial-Regression/index.html b/posts/2019-12-16-TensorFlow-Polynomial-Regression/index.html index 8872687..1904a24 100644 --- a/posts/2019-12-16-TensorFlow-Polynomial-Regression/index.html +++ b/posts/2019-12-16-TensorFlow-Polynomial-Regression/index.html @@ -1,4 +1,4 @@ -Polynomial Regression Using TensorFlow | Navan Chauhan
🕑 16 minute read.

Polynomial Regression Using TensorFlow

In this tutorial you will learn about polynomial regression and how you can implement it in Tensorflow.

In this, we will be performing polynomial regression using 5 types of equations -

  • Linear
  • Quadratic
  • Cubic
  • Quartic
  • Quintic

Regression

What is Regression?

Regression is a statistical measurement that is used to try to determine the relationship between a dependent variable (often denoted by Y), and series of varying variables (called independent variables, often denoted by X ).

What is Polynomial Regression

This is a form of Regression Analysis where the relationship between Y and X is denoted as the nth degree/power of X. Polynomial regression even fits a non-linear relationship (e.g when the points don't form a straight line).

Imports

import tensorflow.compat.v1 as tf +Polynomial Regression Using TensorFlow | Navan Chauhan
🕑 16 minute read.

Polynomial Regression Using TensorFlow

In this tutorial you will learn about polynomial regression and how you can implement it in Tensorflow.

In this, we will be performing polynomial regression using 5 types of equations -

  • Linear
  • Quadratic
  • Cubic
  • Quartic
  • Quintic

Regression

What is Regression?

Regression is a statistical measurement that is used to try to determine the relationship between a dependent variable (often denoted by Y), and series of varying variables (called independent variables, often denoted by X ).

What is Polynomial Regression

This is a form of Regression Analysis where the relationship between Y and X is denoted as the nth degree/power of X. Polynomial regression even fits a non-linear relationship (e.g when the points don't form a straight line).

Imports

import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import matplotlib.pyplot as plt import numpy as np diff --git a/posts/2019-12-22-Fake-News-Detector/index.html b/posts/2019-12-22-Fake-News-Detector/index.html index 5b46c95..c47ec61 100644 --- a/posts/2019-12-22-Fake-News-Detector/index.html +++ b/posts/2019-12-22-Fake-News-Detector/index.html @@ -1,4 +1,4 @@ -Building a Fake News Detector with Turicreate | Navan Chauhan
🕑 6 minute read.

Building a Fake News Detector with Turicreate

In this tutorial we will build a fake news detecting app from scratch, using Turicreate for the machine learning model and SwiftUI for building the app

Note: These commands are written as if you are running a jupyter notebook.

Building the Machine Learning Model

Data Gathering

To build a classifier, you need a lot of data. George McIntire (GH: @joolsa) has created a wonderful dataset containing the headline, body and wheter it is fake or real. Whenever you are looking for a dataset, always try searching on Kaggle and GitHub before you start building your own

Dependencies

I used a Google Colab instance for training my model. If you also plan on using Google Colab then I reccomend choosing a GPU Instance (It is Free) This allows you to train the model on the GPU. Turicreat is built on top of Apache's MXNet Framework, for us to use GPU we need to install a CUDA compatible MXNet package.

!pip install turicreate +Building a Fake News Detector with Turicreate | Navan Chauhan
🕑 6 minute read.

Building a Fake News Detector with Turicreate

In this tutorial we will build a fake news detecting app from scratch, using Turicreate for the machine learning model and SwiftUI for building the app

Note: These commands are written as if you are running a jupyter notebook.

Building the Machine Learning Model

Data Gathering

To build a classifier, you need a lot of data. George McIntire (GH: @joolsa) has created a wonderful dataset containing the headline, body and wheter it is fake or real. Whenever you are looking for a dataset, always try searching on Kaggle and GitHub before you start building your own

Dependencies

I used a Google Colab instance for training my model. If you also plan on using Google Colab then I reccomend choosing a GPU Instance (It is Free) This allows you to train the model on the GPU. Turicreat is built on top of Apache's MXNet Framework, for us to use GPU we need to install a CUDA compatible MXNet package.

!pip install turicreate !pip uninstall -y mxnet !pip install mxnet-cu100==1.4.0.post0
diff --git a/posts/2020-01-14-Converting-between-PIL-NumPy/index.html b/posts/2020-01-14-Converting-between-PIL-NumPy/index.html index 93b57d2..9e21e26 100644 --- a/posts/2020-01-14-Converting-between-PIL-NumPy/index.html +++ b/posts/2020-01-14-Converting-between-PIL-NumPy/index.html @@ -1,4 +1,4 @@ -Converting between image and NumPy array | Navan Chauhan
🕑 0 minute read.

Converting between image and NumPy array

import numpy +Converting between image and NumPy array | Navan Chauhan
🕑 0 minute read.

Converting between image and NumPy array

import numpy import PIL # Convert PIL Image to NumPy array diff --git a/posts/hello-world/index.html b/posts/hello-world/index.html index 48dc4a5..f581dcf 100644 --- a/posts/hello-world/index.html +++ b/posts/hello-world/index.html @@ -1 +1 @@ -Hello World | Navan Chauhan
🕑 0 minute read.

Hello World

Why a Hello World post?

Just re-did the entire website using Publish (Publish by John Sundell). So, a new hello world post :)

Tagged with:
\ No newline at end of file +Hello World | Navan Chauhan
🕑 0 minute read.

Hello World

Why a Hello World post?

Just re-did the entire website using Publish (Publish by John Sundell). So, a new hello world post :)

Tagged with:
\ No newline at end of file diff --git a/posts/index.html b/posts/index.html index be42737..69bd527 100644 --- a/posts/index.html +++ b/posts/index.html @@ -1 +1 @@ -Posts | Navan Chauhan

Posts

Tips, tricks and tutorials which I think might be useful.

\ No newline at end of file +Posts | Navan Chauhan

Posts

Tips, tricks and tutorials which I think might be useful.

\ No newline at end of file -- cgit v1.2.3