<!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1"> <meta name="theme-color" content="#6a9fb5"> <title>Making Predictions using Image Classifier (TensorFlow)</title> <!-- <link rel="stylesheet" href="https://unpkg.com/latex.css/style.min.css" /> --> <link rel="stylesheet" href="/assets/c-hyde.css" /> <link rel="stylesheet" href="http://fonts.googleapis.com/css?family=PT+Sans:400,400italic,700|Abril+Fatface"> <link rel="stylesheet" href="/assets/main.css" /> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="og:site_name" content="Navan Chauhan" /> <link rel="canonical" href="https://web.navan.dev/posts/2019-12-10-TensorFlow-Model-Prediction.html" /> <meta name="twitter:url" content="https://web.navan.dev/posts/2019-12-10-TensorFlow-Model-Prediction.html" /> <meta name="og:url" content="https://web.navan.dev/posts/2019-12-10-TensorFlow-Model-Prediction.html" /> <meta name="twitter:title" content="Making Predictions using Image Classifier (TensorFlow)" /> <meta name="og:title" content="Making Predictions using Image Classifier (TensorFlow)" /> <meta name="description" content="Making predictions for image classification models built using TensorFlow" /> <meta name="twitter:description" content="Making predictions for image classification models built using TensorFlow" /> <meta name="og:description" content="Making predictions for image classification models built using TensorFlow" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="shortcut icon" href="/images/favicon.png" type="image/png" /> <link rel="alternate" href="/feed.rss" type="application/rss+xml" title="Subscribe to Navan Chauhan" /> <meta name="twitter:image" content="https://web.navan.dev/images/opengraph/posts/2019-12-10-TensorFlow-Model-Prediction.png" /> <meta name="og:image" content="https://web.navan.dev/images/opengraph/posts/2019-12-10-TensorFlow-Model-Prediction.png" /> <meta name="google-site-verification" content="LVeSZxz-QskhbEjHxOi7-BM5dDxTg53x2TwrjFxfL0k" /> <script data-goatcounter="https://navanchauhan.goatcounter.com/count" async src="//gc.zgo.at/count.js"></script> <script defer data-domain="web.navan.dev" src="https://plausible.io/js/plausible.js"></script> <link rel="manifest" href="/manifest.json" /> </head> <body class="theme-base-0d"> <div class="sidebar"> <div class="container sidebar-sticky"> <div class="sidebar-about"> <h1><a href="/">Navan</a></h1> <p class="lead" id="random-lead">Alea iacta est.</p> </div> <ul class="sidebar-nav"> <li><a class="sidebar-nav-item" href="/about/">about/links</a></li> <li><a class="sidebar-nav-item" href="/posts/">posts</a></li> <li><a class="sidebar-nav-item" href="/3D-Designs/">3D designs</a></li> <li><a class="sidebar-nav-item" href="/feed.rss">RSS Feed</a></li> <li><a class="sidebar-nav-item" href="/colophon/">colophon</a></li> </ul> <div class="copyright"><p>© 2019-2024. Navan Chauhan <br> <a href="/feed.rss">RSS</a></p></div> </div> </div> <script> let phrases = [ "Something Funny", "Veni, vidi, vici", "Alea iacta est", "In vino veritas", "Acta, non verba", "Castigat ridendo mores", "Cui bono?", "Memento vivere", "अहम् ब्रह्मास्मि", "अनुगच्छतु प्रवाहं", "चरन्मार्गान्विजानाति", "coq de cheval", "我愛啤酒" ]; let new_phrase = phrases[Math.floor(Math.random()*phrases.length)]; let lead = document.getElementById("random-lead"); lead.innerText = new_phrase; </script> <div class="content container"> <div class="post"> <h1 id="making-predictions-using-image-classifier-tensorflow">Making Predictions using Image Classifier (TensorFlow)</h1> <p><em>This was tested on TF 2.x and works as of 2019-12-10</em></p> <p>If you want to understand how to make your own custom image classifier, please refer to my previous post.</p> <p>If you followed my last post, then you created a model which took an image of dimensions 50x50 as an input.</p> <p>First we import the following if we have not imported these before</p> <div class="codehilite"> <pre><span></span><code><span class="kn">import</span> <span class="nn">cv2</span> <span class="kn">import</span> <span class="nn">os</span> </code></pre> </div> <p>Then we read the file using OpenCV.</p> <div class="codehilite"> <pre><span></span><code><span class="n">image</span><span class="o">=</span><span class="n">cv2</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="n">imagePath</span><span class="p">)</span> </code></pre> </div> <p>The cv2. imread() function returns a NumPy array representing the image. Therefore, we need to convert it before we can use it.</p> <div class="codehilite"> <pre><span></span><code><span class="n">image_from_array</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">fromarray</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="s1">'RGB'</span><span class="p">)</span> </code></pre> </div> <p>Then we resize the image</p> <div class="codehilite"> <pre><span></span><code><span class="n">size_image</span> <span class="o">=</span> <span class="n">image_from_array</span><span class="o">.</span><span class="n">resize</span><span class="p">((</span><span class="mi">50</span><span class="p">,</span><span class="mi">50</span><span class="p">))</span> </code></pre> </div> <p>After this we create a batch consisting of only one image</p> <div class="codehilite"> <pre><span></span><code><span class="n">p</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span><span class="n">size_image</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> </code></pre> </div> <p>We then convert this uint8 datatype to a float32 datatype</p> <div class="codehilite"> <pre><span></span><code><span class="n">img</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">tf</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span> </code></pre> </div> <p>Finally we make the prediction</p> <div class="codehilite"> <pre><span></span><code><span class="nb">print</span><span class="p">([</span><span class="s1">'Infected'</span><span class="p">,</span><span class="s1">'Uninfected'</span><span class="p">][</span><span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">img</span><span class="p">))])</span> </code></pre> </div> <p><code>Infected</code></p> </div> <blockquote>If you have scrolled this far, consider subscribing to my mailing list <a href="https://listmonk.navan.dev/subscription/form">here.</a> You can subscribe to either a specific type of post you are interested in, or subscribe to everything with the "Everything" list.</blockquote> <script data-isso="https://comments.navan.dev/" src="https://comments.navan.dev/js/embed.min.js"></script> <section id="isso-thread"> <noscript>Javascript needs to be activated to view comments.</noscript> </section> </div> <script src="assets/manup.min.js"></script> <script src="/pwabuilder-sw-register.js"></script> </body> </html>