Bomb Lab Phases 1-5
Introduction
Lab 2 for CSCI 2400 - Computer Systems.
I like using objdump to disassemble the code and see a broad overview of what is happening.
objdump -d bomb > dis.txt
Phase 1
jovyan@jupyter-nach6988:~/lab2-bomblab-navanchauhan/bombbomb$ gdb -ex 'break phase_1' -ex 'break explode_bomb' -ex 'run' ./bomb
GNU gdb (Ubuntu 12.1-0ubuntu1~22.04) 12.1
Copyright (C) 2022 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<https://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./bomb...
Breakpoint 1 at 0x15c7
Breakpoint 2 at 0x1d4a
Starting program: /home/jovyan/lab2-bomblab-navanchauhan/bombbomb/bomb
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Welcome to my fiendish little bomb. You have 6 phases with
which to blow yourself up. Have a nice day!
test string
Breakpoint 1, 0x00005555555555c7 in phase_1 ()
(gdb) dias phase_1
Undefined command: "dias". Try "help".
(gdb) disas phase_1
Dump of assembler code for function phase_1:
=> 0x00005555555555c7 <+0>: endbr64
0x00005555555555cb <+4>: sub $0x8,%rsp
0x00005555555555cf <+8>: lea 0x1b7a(%rip),%rsi # 0x555555557150
0x00005555555555d6 <+15>: call 0x555555555b31 <strings_not_equal>
0x00005555555555db <+20>: test %eax,%eax
0x00005555555555dd <+22>: jne 0x5555555555e4 <phase_1+29>
0x00005555555555df <+24>: add $0x8,%rsp
0x00005555555555e3 <+28>: ret
0x00005555555555e4 <+29>: call 0x555555555d4a <explode_bomb>
0x00005555555555e9 <+34>: jmp 0x5555555555df <phase_1+24>
End of assembler dump.
(gdb) print 0x555555557150
$1 = 93824992244048
(gdb) x/1s 0x555555557150
0x555555557150: "Controlling complexity is the essence of computer programming."
(gdb)
Phase 2
Phase 1 defused. How about the next one?
1 2 3 4 5 6
Breakpoint 1, 0x00005555555555eb in phase_2 ()
(gdb) disas
Dump of assembler code for function phase_2:
=> 0x00005555555555eb <+0>: endbr64
0x00005555555555ef <+4>: push %rbp
0x00005555555555f0 <+5>: push %rbx
0x00005555555555f1 <+6>: sub $0x28,%rsp
0x00005555555555f5 <+10>: mov %rsp,%rsi
0x00005555555555f8 <+13>: call 0x555555555d97 <read_six_numbers>
0x00005555555555fd <+18>: cmpl $0x0,(%rsp)
0x0000555555555601 <+22>: js 0x55555555560d <phase_2+34>
0x0000555555555603 <+24>: mov %rsp,%rbp
0x0000555555555606 <+27>: mov $0x1,%ebx
0x000055555555560b <+32>: jmp 0x555555555620 <phase_2+53>
0x000055555555560d <+34>: call 0x555555555d4a <explode_bomb>
0x0000555555555612 <+39>: jmp 0x555555555603 <phase_2+24>
0x0000555555555614 <+41>: add $0x1,%ebx
0x0000555555555617 <+44>: add $0x4,%rbp
0x000055555555561b <+48>: cmp $0x6,%ebx
0x000055555555561e <+51>: je 0x555555555631 <phase_2+70>
0x0000555555555620 <+53>: mov %ebx,%eax
0x0000555555555622 <+55>: add 0x0(%rbp),%eax
0x0000555555555625 <+58>: cmp %eax,0x4(%rbp)
0x0000555555555628 <+61>: je 0x555555555614 <phase_2+41>
0x000055555555562a <+63>: call 0x555555555d4a <explode_bomb>
0x000055555555562f <+68>: jmp 0x555555555614 <phase_2+41>
0x0000555555555631 <+70>: add $0x28,%rsp
0x0000555555555635 <+74>: pop %rbx
0x0000555555555636 <+75>: pop %rbp
0x0000555555555637 <+76>: ret
End of assembler dump.
(gdb)
0x00005555555555fd <+18>: cmpl $0x0,(%rsp)
0x0000555555555601 <+22>: js 0x55555555560d <phase_2+34>
...
0x000055555555560d <+34>: call 0x555555555d4a <explode_bomb>
The program first compares if the first number is not 0. If the number is not 0, then the cmpl
instruction returns a negative value. The js
instruction stands for jump if sign -> causing a jump to the specified address if the sign bit is set. This would result in the explode_bomb function being called.
0x0000555555555603 <+24>: mov %rsp,%rbp
0x0000555555555606 <+27>: mov $0x1,%ebx
%rsp
in x86-64 asm, is the stack pointer i.e. it points to the top of the current stack frame. Since the program just read six numbers, the top of the stack (%rsp
) contains the address of the first number.
By executing mov %rsp,%rbp
we are setting the base pointer (%rbp
) to point to this address.
Now, for the second instruction mov $0x1,%ebx
, we are initalising the %ebx
register with the value 1. Based on the assembly code, you can see that this is being used as a counter/index for the loop.
0x000055555555560b <+32>: jmp 0x555555555620 <phase_2+53>
The program now jumps to
0x0000555555555620 <+53>: mov %ebx,%eax
0x0000555555555622 <+55>: add 0x0(%rbp),%eax
0x0000555555555625 <+58>: cmp %eax,0x4(%rbp)
0x0000555555555628 <+61>: je 0x555555555614 <phase_2+41>
Here, the value from %ebx
is copied to the %eax
register. For this iteration, the value should be 1.
Then, the value at the memory location pointed by %rbp
is added to the value in %eax
. For now, 0 is added (the first number that we read).
cmp %eax,0x4(%rbp)
- The instruction compares the value in %eax to the value at the memory address %rbp + 4
. Since Integers in this context are stored using a word of memory of 4 bytes, this indicates it checks against the second number in the sequence.
je 0x555555555614 <phase_2+41>
- The program will jump to phase_2+41
if the previous cmp
instruction determined the values as equal.
0x0000555555555614 <+41>: add $0x1,%ebx
0x0000555555555617 <+44>: add $0x4,%rbp
0x000055555555561b <+48>: cmp $0x6,%ebx
0x000055555555561e <+51>: je 0x555555555631 <phase_2+70>
0x0000555555555620 <+53>: mov %ebx,%eax
0x0000555555555622 <+55>: add 0x0(%rbp),%eax
0x0000555555555625 <+58>: cmp %eax,0x4(%rbp)
0x0000555555555628 <+61>: je 0x555555555614 <phase_2+41>
Here, we can see that the program increments %ebx
by 1, adds a 4 byte offset to %rbp
(the number we will be matching now), and checks if %ebx
is equal to 6. If it is, it breaks the loop and jumps to <phase_2+70>
succesfully finishing this stage.
Now, given that we know the first two numbers in the sequence are 0 1
, we can calculate the other numbers by following the pattern of adding the counter and the value of the previous number.
Thus,
- 3rd number = 1 (previous value) + 2 = 3
- 4th number = 3 (prev value) + 3 = 6
- 5th number = 6 (prev value) + 4 = 10
- 6th number = 10 (prev value) + 5 = 15
...
Phase 1 defused. How about the next one?
0 1 3 6 10 15
Breakpoint 1, 0x00005555555555eb in phase_2 ()
(gdb) continue
Continuing.
That's number 2. Keep going!
Phase 3
Let us look at the disassembled code first
0000000000001638 <phase_3>:
1638: f3 0f 1e fa endbr64
163c: 48 83 ec 18 sub $0x18,%rsp
1640: 48 8d 4c 24 07 lea 0x7(%rsp),%rcx
1645: 48 8d 54 24 0c lea 0xc(%rsp),%rdx
164a: 4c 8d 44 24 08 lea 0x8(%rsp),%r8
164f: 48 8d 35 60 1b 00 00 lea 0x1b60(%rip),%rsi # 31b6 <_IO_stdin_used+0x1b6>
1656: b8 00 00 00 00 mov $0x0,%eax
165b: e8 80 fc ff ff call 12e0 <__isoc99_sscanf@plt>
1660: 83 f8 02 cmp $0x2,%eax
1663: 7e 20 jle 1685 <phase_3+0x4d>
1665: 83 7c 24 0c 07 cmpl $0x7,0xc(%rsp)
166a: 0f 87 0d 01 00 00 ja 177d <phase_3+0x145>
1670: 8b 44 24 0c mov 0xc(%rsp),%eax
1674: 48 8d 15 55 1b 00 00 lea 0x1b55(%rip),%rdx # 31d0 <_IO_stdin_used+0x1d0>
167b: 48 63 04 82 movslq (%rdx,%rax,4),%rax
167f: 48 01 d0 add %rdx,%rax
1682: 3e ff e0 notrack jmp *%rax
1685: e8 c0 06 00 00 call 1d4a <explode_bomb>
168a: eb d9 jmp 1665 <phase_3+0x2d>
168c: b8 63 00 00 00 mov $0x63,%eax
1691: 81 7c 24 08 3d 02 00 cmpl $0x23d,0x8(%rsp)
1698: 00
1699: 0f 84 e8 00 00 00 je 1787 <phase_3+0x14f>
169f: e8 a6 06 00 00 call 1d4a <explode_bomb>
16a4: b8 63 00 00 00 mov $0x63,%eax
16a9: e9 d9 00 00 00 jmp 1787 <phase_3+0x14f>
16ae: b8 61 00 00 00 mov $0x61,%eax
16b3: 81 7c 24 08 27 01 00 cmpl $0x127,0x8(%rsp)
16ba: 00
16bb: 0f 84 c6 00 00 00 je 1787 <phase_3+0x14f>
16c1: e8 84 06 00 00 call 1d4a <explode_bomb>
16c6: b8 61 00 00 00 mov $0x61,%eax
16cb: e9 b7 00 00 00 jmp 1787 <phase_3+0x14f>
16d0: b8 78 00 00 00 mov $0x78,%eax
16d5: 81 7c 24 08 e7 02 00 cmpl $0x2e7,0x8(%rsp)
16dc: 00
16dd: 0f 84 a4 00 00 00 je 1787 <phase_3+0x14f>
16e3: e8 62 06 00 00 call 1d4a <explode_bomb>
16e8: b8 78 00 00 00 mov $0x78,%eax
16ed: e9 95 00 00 00 jmp 1787 <phase_3+0x14f>
16f2: b8 64 00 00 00 mov $0x64,%eax
16f7: 81 7c 24 08 80 02 00 cmpl $0x280,0x8(%rsp)
16fe: 00
16ff: 0f 84 82 00 00 00 je 1787 <phase_3+0x14f>
1705: e8 40 06 00 00 call 1d4a <explode_bomb>
170a: b8 64 00 00 00 mov $0x64,%eax
170f: eb 76 jmp 1787 <phase_3+0x14f>
1711: b8 6d 00 00 00 mov $0x6d,%eax
1716: 81 7c 24 08 ff 02 00 cmpl $0x2ff,0x8(%rsp)
171d: 00
171e: 74 67 je 1787 <phase_3+0x14f>
1720: e8 25 06 00 00 call 1d4a <explode_bomb>
1725: b8 6d 00 00 00 mov $0x6d,%eax
172a: eb 5b jmp 1787 <phase_3+0x14f>
172c: b8 71 00 00 00 mov $0x71,%eax
1731: 81 7c 24 08 75 03 00 cmpl $0x375,0x8(%rsp)
1738: 00
1739: 74 4c je 1787 <phase_3+0x14f>
173b: e8 0a 06 00 00 call 1d4a <explode_bomb>
1740: b8 71 00 00 00 mov $0x71,%eax
1745: eb 40 jmp 1787 <phase_3+0x14f>
1747: b8 79 00 00 00 mov $0x79,%eax
174c: 81 7c 24 08 94 02 00 cmpl $0x294,0x8(%rsp)
1753: 00
1754: 74 31 je 1787 <phase_3+0x14f>
1756: e8 ef 05 00 00 call 1d4a <explode_bomb>
175b: b8 79 00 00 00 mov $0x79,%eax
1760: eb 25 jmp 1787 <phase_3+0x14f>
1762: b8 79 00 00 00 mov $0x79,%eax
1767: 81 7c 24 08 88 02 00 cmpl $0x288,0x8(%rsp)
176e: 00
176f: 74 16 je 1787 <phase_3+0x14f>
1771: e8 d4 05 00 00 call 1d4a <explode_bomb>
1776: b8 79 00 00 00 mov $0x79,%eax
177b: eb 0a jmp 1787 <phase_3+0x14f>
177d: e8 c8 05 00 00 call 1d4a <explode_bomb>
1782: b8 68 00 00 00 mov $0x68,%eax
1787: 38 44 24 07 cmp %al,0x7(%rsp)
178b: 75 05 jne 1792 <phase_3+0x15a>
178d: 48 83 c4 18 add $0x18,%rsp
1791: c3 ret
1792: e8 b3 05 00 00 call 1d4a <explode_bomb>
1797: eb f4 jmp 178d <phase_3+0x155>
...
165b: e8 80 fc ff ff call 12e0 <__isoc99_sscanf@plt>
...
We can see that scanf
is being called which means we need to figure out what datatype(s) the program is expecting.
Because I do not want to enter the solutions to phases 1 and 2 again and again, I am goig to pass a file which has these solutions.
jovyan@jupyter-nach6988:~/lab2-bomblab-navanchauhan/bombbomb$ gdb -ex 'break phase_3' -ex 'break explode_bomb' -ex 'run' -args ./bomb sol.txt
GNU gdb (Ubuntu 12.1-0ubuntu1~22.04) 12.1
Copyright (C) 2022 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<https://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./bomb...
Breakpoint 1 at 0x1638
Breakpoint 2 at 0x1d4a
Starting program: /home/jovyan/lab2-bomblab-navanchauhan/bombbomb/bomb sol.txt
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Welcome to my fiendish little bomb. You have 6 phases with
which to blow yourself up. Have a nice day!
Phase 1 defused. How about the next one?
That's number 2. Keep going!
random string
Breakpoint 1, 0x0000555555555638 in phase_3 ()
(gdb) disas
Dump of assembler code for function phase_3:
=> 0x0000555555555638 <+0>: endbr64
0x000055555555563c <+4>: sub $0x18,%rsp
0x0000555555555640 <+8>: lea 0x7(%rsp),%rcx
0x0000555555555645 <+13>: lea 0xc(%rsp),%rdx
0x000055555555564a <+18>: lea 0x8(%rsp),%r8
0x000055555555564f <+23>: lea 0x1b60(%rip),%rsi # 0x5555555571b6
0x0000555555555656 <+30>: mov $0x0,%eax
0x000055555555565b <+35>: call 0x5555555552e0 <__isoc99_sscanf@plt>
0x0000555555555660 <+40>: cmp $0x2,%eax
0x0000555555555663 <+43>: jle 0x555555555685 <phase_3+77>
0x0000555555555665 <+45>: cmpl $0x7,0xc(%rsp)
0x000055555555566a <+50>: ja 0x55555555577d <phase_3+325>
0x0000555555555670 <+56>: mov 0xc(%rsp),%eax
0x0000555555555674 <+60>: lea 0x1b55(%rip),%rdx # 0x5555555571d0
0x000055555555567b <+67>: movslq (%rdx,%rax,4),%rax
0x000055555555567f <+71>: add %rdx,%rax
0x0000555555555682 <+74>: notrack jmp *%rax
0x0000555555555685 <+77>: call 0x555555555d4a <explode_bomb>
0x000055555555568a <+82>: jmp 0x555555555665 <phase_3+45>
0x000055555555568c <+84>: mov $0x63,%eax
0x0000555555555691 <+89>: cmpl $0x23d,0x8(%rsp)
0x0000555555555699 <+97>: je 0x555555555787 <phase_3+335>
0x000055555555569f <+103>: call 0x555555555d4a <explode_bomb>
0x00005555555556a4 <+108>: mov $0x63,%eax
0x00005555555556a9 <+113>: jmp 0x555555555787 <phase_3+335>
--Type <RET> for more, q to quit, c to continue without paging--
gdb
has thankfully marked the address which is being passed to scanf
. We can access the value:
(gdb) x/1s 0x5555555571b6
0x5555555571b6: "%d %c %d"
(gdb)
BINGO! The program expects an integer, character, and another integer. Onwards.
0x0000555555555660 <+40>: cmp $0x2,%eax
0x0000555555555663 <+43>: jle 0x555555555685 <phase_3+77>
...
0x0000555555555685 <+77>: call 0x555555555d4a <explode_bomb>
The program checks whether scanf
returns a value <= 2, if it does then it calls the explode_bomb
function.
Note: scanf
returns the number of fields that were succesfully converted and assigned
0x0000555555555665 <+45>: cmpl $0x7,0xc(%rsp)
0x000055555555566a <+50>: ja 0x55555555577d <phase_3+325>
...
0x000055555555577d <+325>: call 0x555555555d4a <explode_bomb>
Similarly, the program checks and ensures the returned value is not > 7.
0x0000555555555670 <+56>: mov 0xc(%rsp),%eax
0x0000555555555674 <+60>: lea 0x1b55(%rip),%rdx # 0x5555555571d0
0x000055555555567b <+67>: movslq (%rdx,%rax,4),%rax
0x000055555555567f <+71>: add %rdx,%rax
0x0000555555555682 <+74>: notrack jmp *%rax
0x0000555555555685 <+77>: call 0x555555555d4a <explode_bomb>
0x0000555555555670 <+56>: mov 0xc(%rsp),%eax
- Moves value located at0xc
(12 in Decimal) bytes above the stack pointer to%eax
register.0x0000555555555674 <+60>: lea 0x1b55(%rip),%rdx # 0x5555555571d0
- This instruction calculates an effective address by adding0x1b55
to the current instruction pointer (%rip
). The result is stored in the%rdx
register.0x000055555555567b <+67>: movslq (%rdx,%rax,4),%rax
movslq
stands for "move with sign-extension from a 32-bit value to a 64-bit value." (if the 32-bit value is negative, the 64-bit result will have all its upper 32 bits set to 1; otherwise, they'll be set to 0).(%rdx,%rax,4)
- First start with the value in the %rdx register, then add to it the value in the %rax register multiplied by 4.%rax
- Destination Register
0x000055555555567f <+71>: add %rdx,%rax
- Adds base address in%rdx
to the offset in%rax
0x0000555555555682 <+74>: notrack jmp *%rax
- Jumps to the address stored in%rax
0x0000555555555685 <+77>: call 0x555555555d4a <explode_bomb>
- If we are unable to jump to the specified instruction, callexplode_bomb
Let us try to run the program again with a valid input for the first number and see what the program is computing for the address.
I used the input: 3 c 123
.
To check what is the computed address, we can switch to the asm layout by running layout asm
, and then going through instructions ni
or si
until we reach the line movslq (%rdx,%rax,4),%rax
%rax
should hold the value 3.
(gdb) print $rax
$1 = 3
We can see that this makes us jump to <phase_3+186>
(Continue to step through the code by using ni
)
0x00005555555556f2 <+186>: mov $0x64,%eax
0x00005555555556f7 <+191>: cmpl $0x280,0x8(%rsp)
0x00005555555556ff <+199>: je 0x555555555787 <phase_3+335>
0x0000555555555705 <+205>: call 0x555555555d4a <explode_bomb>
We see that 0x64
(Decimal 100) is being stored in %eax
. Then, the program compares 0x280
(Decimal 640) with memory address 0x8
bytes above the stack pointer (%rsp
). If the values are equal, then it jumps to <phase_3+335>
, otherwise explode_bomb
is called.
0x0000555555555787 <+335>: cmp %al,0x7(%rsp)
0x000055555555578b <+339>: jne 0x555555555792 <phase_3+346>
0x000055555555578d <+341>: add $0x18,%rsp
0x0000555555555791 <+345>: ret
0x0000555555555792 <+346>: call 0x555555555d4a <explode_bomb>
Here, the program is comparing the value of our given character to the value stored in %al
(lower 8 bits of EAX
), and checks if they are not equal.
Knowing that the character is stored at an offset of 7 bytes to %rsp
, we can print and check the value by running:
(gdb) x/1cw $rsp+7
c
(gdb) print $al
$1 = 100
We can simply lookup the ASCII table, and see that 100 in decimal stands for the character d
. Let us try this answer:
...
That's number 2. Keep going!
3 d 640
Breakpoint 1, 0x0000555555555638 in phase_3 ()
(gdb) continue
Continuing.
Halfway there!
Phase 4
jovyan@jupyter-nach6988:~/lab2-bomblab-navanchauhan/bombbomb$ gdb -ex 'break phase_4' -ex 'break explode_bomb' -ex 'run' -args ./bomb sol.txt
GNU gdb (Ubuntu 12.1-0ubuntu1~22.04) 12.1
Copyright (C) 2022 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<https://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./bomb...
Breakpoint 1 at 0x17d3
Breakpoint 2 at 0x1d4a
Starting program: /home/jovyan/lab2-bomblab-navanchauhan/bombbomb/bomb sol.txt
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Welcome to my fiendish little bomb. You have 6 phases with
which to blow yourself up. Have a nice day!
Phase 1 defused. How about the next one?
That's number 2. Keep going!
Halfway there!
test string
Breakpoint 1, 0x00005555555557d3 in phase_4 ()
(gdb) disas phase_4
Dump of assembler code for function phase_4:
=> 0x00005555555557d3 <+0>: endbr64
0x00005555555557d7 <+4>: sub $0x18,%rsp
0x00005555555557db <+8>: lea 0x8(%rsp),%rcx
0x00005555555557e0 <+13>: lea 0xc(%rsp),%rdx
0x00005555555557e5 <+18>: lea 0x1bba(%rip),%rsi # 0x5555555573a6
0x00005555555557ec <+25>: mov $0x0,%eax
0x00005555555557f1 <+30>: call 0x5555555552e0 <__isoc99_sscanf@plt>
0x00005555555557f6 <+35>: cmp $0x2,%eax
0x00005555555557f9 <+38>: jne 0x555555555802 <phase_4+47>
0x00005555555557fb <+40>: cmpl $0xe,0xc(%rsp)
0x0000555555555800 <+45>: jbe 0x555555555807 <phase_4+52>
0x0000555555555802 <+47>: call 0x555555555d4a <explode_bomb>
0x0000555555555807 <+52>: mov $0xe,%edx
0x000055555555580c <+57>: mov $0x0,%esi
0x0000555555555811 <+62>: mov 0xc(%rsp),%edi
0x0000555555555815 <+66>: call 0x555555555799 <func4>
0x000055555555581a <+71>: cmp $0x2,%eax
0x000055555555581d <+74>: jne 0x555555555826 <phase_4+83>
0x000055555555581f <+76>: cmpl $0x2,0x8(%rsp)
0x0000555555555824 <+81>: je 0x55555555582b <phase_4+88>
0x0000555555555826 <+83>: call 0x555555555d4a <explode_bomb>
0x000055555555582b <+88>: add $0x18,%rsp
0x000055555555582f <+92>: ret
End of assembler dump.
(gdb)
Again, gdb
has marked the string being passed to scanf
(gdb) x/1s 0x5555555573a6
0x5555555573a6: "%d %d"
Okay, so this time we are supposed to enter 2 numbers.
0x00005555555557f6 <+35>: cmp $0x2,%eax
0x00005555555557f9 <+38>: jne 0x555555555802 <phase_4+47>
Checks if there were 2 values read from calling scanf
, if not -> jump to <phase_4+47>
which calls <explode_bomb>
.
0x00005555555557fb <+40>: cmpl $0xe,0xc(%rsp)
0x0000555555555800 <+45>: jbe 0x555555555807 <phase_4+52>
Compare 0xe
(14 in Decimal) and value stored at $rsp
+ 0xc
bytes (Decimal 12). If this condition is met (<= 14), jump to <phase_4+52>
. If not, then explode bomb.
...
0x0000555555555807 <+52>: mov $0xe,%edx
0x000055555555580c <+57>: mov $0x0,%esi
0x0000555555555811 <+62>: mov 0xc(%rsp),%edi
0x0000555555555815 <+66>: call 0x555555555799 <func4>
0x000055555555581a <+71>: cmp $0x2,%eax
0x000055555555581d <+74>: jne 0x555555555826 <phase_4+83>
0x000055555555581f <+76>: cmpl $0x2,0x8(%rsp)
0x0000555555555824 <+81>: je 0x55555555582b <phase_4+88>
0x0000555555555826 <+83>: call 0x555555555d4a <explode_bomb>
0x0000555555555815 <+66>: call 0x555555555799 <func4>
calls another function calledfunc4
- The returned value is compared with
0x2
, if they are not equal then the program jumps to call<explode_bomb>
. This tells us thatfunc4
should return 2.
Let us look into func4
(gdb) disas func4
Dump of assembler code for function func4:
0x0000555555555799 <+0>: endbr64
0x000055555555579d <+4>: sub $0x8,%rsp
0x00005555555557a1 <+8>: mov %edx,%ecx
0x00005555555557a3 <+10>: sub %esi,%ecx
0x00005555555557a5 <+12>: shr %ecx
0x00005555555557a7 <+14>: add %esi,%ecx
0x00005555555557a9 <+16>: cmp %edi,%ecx
0x00005555555557ab <+18>: ja 0x5555555557b9 <func4+32>
0x00005555555557ad <+20>: mov $0x0,%eax
0x00005555555557b2 <+25>: jb 0x5555555557c5 <func4+44>
0x00005555555557b4 <+27>: add $0x8,%rsp
0x00005555555557b8 <+31>: ret
0x00005555555557b9 <+32>: lea -0x1(%rcx),%edx
0x00005555555557bc <+35>: call 0x555555555799 <func4>
0x00005555555557c1 <+40>: add %eax,%eax
0x00005555555557c3 <+42>: jmp 0x5555555557b4 <func4+27>
0x00005555555557c5 <+44>: lea 0x1(%rcx),%esi
0x00005555555557c8 <+47>: call 0x555555555799 <func4>
0x00005555555557cd <+52>: lea 0x1(%rax,%rax,1),%eax
0x00005555555557d1 <+56>: jmp 0x5555555557b4 <func4+27>
This looks like a recursive function :( (I hate recursive functions)
Let's annotate the instructions.
endbr64
sub $0x8,%rsp // subtract 8 bytes from the stack pointer
mov %edx,%ecx // Move the value in register %edx to %ecx
sub %esi,%ecx // Subtract the value in %esi from %ecx
shr %ecx // Right shift the value in %ecx by one bit (dividing the value by 2)
add %esi,%ecx // Add the value in %esi to %ecx
cmp %edi,%ecx // Compare
ja 0x5555555557b9 <func4+32> // If %ecx > %edi -> jump to instruction at offset +32
mov $0x0,%eax // Move 0 to %eax
jb 0x5555555557c5 <func4+44> // If %ecx < %edi -> jump to instruction at offset +44.
add $0x8,%rsp // add 8 bytes to the stack pointer
ret // return
lea -0x1(%rcx),%edx // LEA of $rxc - 1 into $edx
call 0x555555555799 <func4> // Call itself
add %eax,%eax // Double the value in %eax
jmp 0x5555555557b4 <func4+27> // jump to the instruction at offset +27
lea 0x1(%rcx),%esi
call 0x555555555799 <func4>
lea 0x1(%rax,%rax,1),%eax // LEA of %rax * 2 + 1 into $eax
jmp 0x5555555557b4 <func4+27>
We can either try to compute the values by hand, or write a simple script in Python to get the answer.
def func4(edi, esi=0, edx=20):
ecx = (edx - esi) // 2 + esi
if ecx > edi:
return 2 * func4(edi, esi, ecx - 1)
elif ecx < edi:
return 2 * func4(edi, ecx + 1, edx) + 1
else:
return 0
for x in range(15): # We can limit to 14
if func4(x) == 2:
print(f"answer is {x}")
break
Running this code, we get: answer is 5
Okay, so we know that the number needed to be passed to func4
is 5. But, what about the second digit?
If we go back to the code for <phase_4>
, we can see that:
0x000055555555581f <+76>: cmpl $0x2,0x8(%rsp)
0x0000555555555824 <+81>: je 0x55555555582b <phase_4+88>
The value at $rsp+8
should be equal to 2. So, let us try passing 5 2
as our input.
...
Phase 1 defused. How about the next one?
That's number 2. Keep going!
Halfway there!
5 2
Breakpoint 1, 0x00005555555557d3 in phase_4 ()
(gdb) continue
Continuing.
So you got that one. Try this one.
Phase 5
So you got that one. Try this one.
test string
Breakpoint 1, 0x0000555555555830 in phase_5 ()
(gdb) disas phase_5
Dump of assembler code for function phase_5:
=> 0x0000555555555830 <+0>: endbr64
0x0000555555555834 <+4>: push %rbx
0x0000555555555835 <+5>: sub $0x10,%rsp
0x0000555555555839 <+9>: mov %rdi,%rbx
0x000055555555583c <+12>: call 0x555555555b10 <string_length>
0x0000555555555841 <+17>: cmp $0x6,%eax
0x0000555555555844 <+20>: jne 0x55555555588b <phase_5+91>
0x0000555555555846 <+22>: mov $0x0,%eax
0x000055555555584b <+27>: lea 0x199e(%rip),%rcx # 0x5555555571f0 <array.0>
0x0000555555555852 <+34>: movzbl (%rbx,%rax,1),%edx
0x0000555555555856 <+38>: and $0xf,%edx
0x0000555555555859 <+41>: movzbl (%rcx,%rdx,1),%edx
0x000055555555585d <+45>: mov %dl,0x9(%rsp,%rax,1)
0x0000555555555861 <+49>: add $0x1,%rax
0x0000555555555865 <+53>: cmp $0x6,%rax
0x0000555555555869 <+57>: jne 0x555555555852 <phase_5+34>
0x000055555555586b <+59>: movb $0x0,0xf(%rsp)
0x0000555555555870 <+64>: lea 0x9(%rsp),%rdi
0x0000555555555875 <+69>: lea 0x1943(%rip),%rsi # 0x5555555571bf
0x000055555555587c <+76>: call 0x555555555b31 <strings_not_equal>
0x0000555555555881 <+81>: test %eax,%eax
0x0000555555555883 <+83>: jne 0x555555555892 <phase_5+98>
0x0000555555555885 <+85>: add $0x10,%rsp
0x0000555555555889 <+89>: pop %rbx
0x000055555555588a <+90>: ret
0x000055555555588b <+91>: call 0x555555555d4a <explode_bomb>
0x0000555555555890 <+96>: jmp 0x555555555846 <phase_5+22>
0x0000555555555892 <+98>: call 0x555555555d4a <explode_bomb>
0x0000555555555897 <+103>: jmp 0x555555555885 <phase_5+85>
End of assembler dump.
(gdb)
...
0x000055555555583c <+12>: call 0x555555555b10 <string_length>
0x0000555555555841 <+17>: cmp $0x6,%eax
0x0000555555555844 <+20>: jne 0x55555555588b <phase_5+91>
...
0x000055555555588b <+91>: call 0x555555555d4a <explode_bomb>
...
First things first, these instructions check to make sure the passed string is of length 6, otherwise explode_bomb
is called.
We can also see a similar pattern compared to Phase 2, where we had a loop:
- The looping part:
mov $0x0,%eax
- Initialise%eax
and set it to 0 (our counter/iterator)movzbl (%rbx,%rax,1),%edx
- Access%rbx + 1 * %rax
and store it in%edx
and $0xf,%edx
- Take the least significant 4 bits of the byte.movzbl (%rcx,%rdx,1),%edx
- Use the 4 bits as an index into another array and load the corresponding byte into%edx
mov %dl,0x9(%rsp,%rax,1)
- Store the transformed byte into a buffer on the stackadd $0x1,%rax
- Increment%rax
cmp $0x6,%rax
- If the index is not yet 6, loop again
movb $0x0,0xf(%rsp)
- Null-terminate the transformed stringlea 0x9(%rsp),%rdi
andlea 0x1943(%rip),%rsi
all 0x555555555b31 <strings_not_equal>
check if the two strings loaded up just before this are equal or not.
We can check the reference string we need, which gdb
has marked as # 0x5555555571bf
, and the lookup table marked as # 0x5555555571f0 <array.0>
(gdb) x/s 0x5555555571bf
0x5555555571bf: "bruins"
(gdb) x/s 0x5555555571f0
0x5555555571f0 <array.0>: "maduiersnfotvbylSo you think you can stop the bomb with ctrl-c, do you?"
(gdb)
To summarize the transformation process:
- The function takes each byte of the string
- It keeps only the least significant 4 bits of each byte
- It uses these 4 bits as an index into the lookup table (
array.0
) - The value from the array is then stored in a buffer
Here's how the transformation process can be reversed for each character in "bruins":
1. Find the index of b
in the lookup table (in our case, it is 13 since we index starting 0)
2. Calculate binary representation of this index (in our case 13 can be written as 1101 in binary)
3. Find ASCII character whose least significant 4 bits match (in our case, m
has binary representation 01101101
)
Repeat for all 6 characters
Hint: Using an ASCII - Binary Table can save you time.
Thus, we can have the following transformation:
b -> m
r -> f
u -> c
i -> d
n -> h
s -> g
Let us try out this answer:
...
That's number 2. Keep going!
Halfway there!
So you got that one. Try this one.
mfcdhg
Breakpoint 1, 0x0000555555555830 in phase_5 ()
(gdb) continue
Continuing.
Good work! On to the next...
Awesome!
Phase 6
If you have scrolled this far, consider subscribing to my mailing list here. You can subscribe to either a specific type of post you are interested in, or subscribe to everything with the "Everything" list.