<!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="theme-color" content="#6a9fb5"> <title>Quadratic Formula Derivation</title> <!-- <link rel="stylesheet" href="https://unpkg.com/latex.css/style.min.css" /> --> <link rel="stylesheet" href="/assets/c-hyde.css"> <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Abril+Fatface"> <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=PT+Sans:400,400italic,700"> <link rel="stylesheet" href="/assets/main.css"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="og:site_name" content="Navan Chauhan"> <link rel="canonical" href="https://web.navan.dev/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.html"> <meta name="twitter:url" content="https://web.navan.dev/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.html"> <meta name="og:url" content="https://web.navan.dev/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.html"> <meta name="twitter:title" content="Quadratic Formula Derivation"> <meta name="og:title" content="Quadratic Formula Derivation"> <meta name="description" content="Quick derivation of the quadratic equation by completing the square"> <meta name="twitter:description" content="Quick derivation of the quadratic equation by completing the square"> <meta name="og:description" content="Quick derivation of the quadratic equation by completing the square"> <meta name="twitter:card" content="summary_large_image"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <link rel="shortcut icon" href="/images/favicon.png" type="image/png"> <link href="/feed.rss" type="application/atom+xml" rel="alternate" title="Sitewide Atom feed"> <meta name="twitter:image" content="https://web.navan.dev/images/opengraph/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.png"> <meta name="og:image" content="https://web.navan.dev/images/opengraph/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.png"> <meta name="google-site-verification" content="LVeSZxz-QskhbEjHxOi7-BM5dDxTg53x2TwrjFxfL0k"> <script data-goatcounter="https://navanchauhan.goatcounter.com/count" async src="//gc.zgo.at/count.js"></script> <script defer data-domain="web.navan.dev" src="https://plausible.io/js/plausible.js"></script> <link rel="manifest" href="/manifest.json"> </head> <body class="theme-base-0d"> <div class="sidebar"> <div class="container sidebar-sticky"> <div class="sidebar-about"> <h1><a href="/">Navan</a></h1> <p class="lead" id="random-lead">Alea iacta est.</p> </div> <ul class="sidebar-nav"> <li><a class="sidebar-nav-item" href="/about/">about/links</a></li> <li><a class="sidebar-nav-item" href="/posts/">posts</a></li> <li><a class="sidebar-nav-item" href="/3D-Designs/">3D designs</a></li> <li><a class="sidebar-nav-item" href="/feed.rss">RSS Feed</a></li> <li><a class="sidebar-nav-item" href="/colophon/">colophon</a></li> </ul> <div class="copyright"><p>© 2019-2024. Navan Chauhan <br> <a href="/feed.rss">RSS</a></p></div> </div> </div> <script> let phrases = [ "Something Funny", "Veni, vidi, vici", "Alea iacta est", "In vino veritas", "Acta, non verba", "Castigat ridendo mores", "Cui bono?", "Memento vivere", "अहम् ब्रह्मास्मि", "अनुगच्छतु प्रवाहं", "चरन्मार्गान्विजानाति", "coq de cheval", "我愛啤酒" ]; let new_phrase = phrases[Math.floor(Math.random()*phrases.length)]; let lead = document.getElementById("random-lead"); lead.innerText = new_phrase; </script> <div class="content container"> <div class="post"> <h1 id="quadratic-formula-derivation">Quadratic Formula Derivation</h1> <p>The standard form of a quadratic equation is:</p> <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>0</mn></mrow></math> <p>Here, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>∈</mo><mi>ℝ</mi></mrow></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>a</mi><mo>≠</mo><mn>0</mn></mrow></math></p> <p>We begin by first dividing both sides by the coefficient <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>a</mi></mrow></math></p> <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mi>⟹</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mi>x</mi><mo>+</mo><mfrac><mrow><mi>c</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mo>=</mo><mn>0</mn></mrow></math> <p>We can rearrange the equation:</p> <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mi>x</mi><mo>=</mo><mo>−</mo><mfrac><mrow><mi>c</mi></mrow><mrow><mi>a</mi></mrow></mfrac></mrow></math> <p>We can then use the method of completing the square. (<a rel="noopener" target="_blank" href="https://www.mathsisfun.com/algebra/completing-square.html">Maths is Fun</a> has a really good explanation for this technique)</p> <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mi>x</mi><mo>+</mo><mo stretchy="false">(</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mo>−</mo><mi>c</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mo>+</mo><mo stretchy="false">(</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></math> <p>On our LHS, we can clearly recognize that it is the expanded form of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>d</mi><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></math> i.e <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>x</mi><mi>·</mi><mi>d</mi><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></mrow></math></p> <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mi>⟹</mi><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mo>−</mo><mi>c</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><msup><mi>b</mi><mn>2</mn></msup></mrow><mrow><mn>4</mn><msup><mi>a</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow><mrow><mn>4</mn><msup><mi>a</mi><mn>2</mn></msup></mrow></mfrac></mrow></math> <p>Taking the square root of both sides</p> <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mtable displaystyle="true" rowspacing="3pt" columnspacing="0em 2em"><mtr><mtd columnalign="right"><mi>x</mi><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mtd><mtd columnalign="left"><mi /><mo>=</mo><mfrac><mrow><msqrt><mrow><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></msqrt></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="right"><mi>x</mi></mtd><mtd columnalign="left"><mi /><mo>=</mo><mfrac><mrow><mi>±</mi><msqrt><mrow><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></msqrt><mo>−</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="right" /><mtd columnalign="left"><mi /><mo>=</mo><mfrac><mrow><mo>−</mo><mi>b</mi><mi>±</mi><msqrt><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi></mrow></msqrt></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mtd></mtr></mtable></mrow></math> <p>This gives you the world famous quadratic formula:</p> <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mi>x</mi><mo>=</mo><mfrac><mrow><mo>−</mo><mi>b</mi><mi>±</mi><msqrt><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi></mrow></msqrt></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mrow></math> </div> <blockquote>If you have scrolled this far, consider subscribing to my mailing list <a href="https://listmonk.navan.dev/subscription/form">here.</a> You can subscribe to either a specific type of post you are interested in, or subscribe to everything with the "Everything" list.</blockquote> <script data-isso="https://comments.navan.dev/" src="https://comments.navan.dev/js/embed.min.js"></script> <div id="isso-thread"> <noscript>Javascript needs to be activated to view comments.</noscript> </div> </div> <script src="assets/manup.min.js"></script> <script src="/pwabuilder-sw-register.js"></script> </body> </html>