1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
---
date: 2019-12-08 14:16
description: Tutorial on creating an image classifier model using TensorFlow which detects malaria
tags: Tutorial, Tensorflow, Colab, AI
---
# Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria
**Done during Google Code-In. Org: Tensorflow.**
## Imports
```python
%tensorflow_version 2.x #This is for telling Colab that you want to use TF 2.0, ignore if running on local machine
from PIL import Image # We use the PIL Library to resize images
import numpy as np
import os
import cv2
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import pandas as pd
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout
```
## Dataset
### Fetching the Data
```python
!wget ftp://lhcftp.nlm.nih.gov/Open-Access-Datasets/Malaria/cell_images.zip
!unzip cell_images.zip
```
### Processing the Data
We resize all the images as 50x50 and add the numpy array of that image as well as their label names (Infected or Not) to common arrays.
```python
data = []
labels = []
Parasitized = os.listdir("./cell_images/Parasitized/")
for parasite in Parasitized:
try:
image=cv2.imread("./cell_images/Parasitized/"+parasite)
image_from_array = Image.fromarray(image, 'RGB')
size_image = image_from_array.resize((50, 50))
data.append(np.array(size_image))
labels.append(0)
except AttributeError:
print("")
Uninfected = os.listdir("./cell_images/Uninfected/")
for uninfect in Uninfected:
try:
image=cv2.imread("./cell_images/Uninfected/"+uninfect)
image_from_array = Image.fromarray(image, 'RGB')
size_image = image_from_array.resize((50, 50))
data.append(np.array(size_image))
labels.append(1)
except AttributeError:
print("")
```
### Splitting Data
```python
df = np.array(data)
labels = np.array(labels)
(X_train, X_test) = df[(int)(0.1*len(df)):],df[:(int)(0.1*len(df))]
(y_train, y_test) = labels[(int)(0.1*len(labels)):],labels[:(int)(0.1*len(labels))]
```
```
s=np.arange(X_train.shape[0])
np.random.shuffle(s)
X_train=X_train[s]
y_train=y_train[s]
X_train = X_train/255.0
```
## Model
### Creating Model
By creating a sequential model, we create a linear stack of layers.
*Note: The input shape for the first layer is 50,50 which corresponds with the sizes of the resized images*
```python
model = models.Sequential()
model.add(layers.Conv2D(filters=16, kernel_size=2, padding='same', activation='relu', input_shape=(50,50,3)))
model.add(layers.MaxPooling2D(pool_size=2))
model.add(layers.Conv2D(filters=32,kernel_size=2,padding='same',activation='relu'))
model.add(layers.MaxPooling2D(pool_size=2))
model.add(layers.Conv2D(filters=64,kernel_size=2,padding="same",activation="relu"))
model.add(layers.MaxPooling2D(pool_size=2))
model.add(layers.Dropout(0.2))
model.add(layers.Flatten())
model.add(layers.Dense(500,activation="relu"))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(2,activation="softmax"))#2 represent output layer neurons
model.summary()
```
### Compiling Model
We use the Adam optimiser as it is an adaptive learning rate optimisation algorithm that's been designed specifically for *training* deep neural networks, which means it changes its learning rate automatically to get the best results
```python
model.compile(optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
```
### Training Model
We train the model for 10 epochs on the training data and then validate it using the testing data
```python
history = model.fit(X_train,y_train, epochs=10, validation_data=(X_test,y_test))
```
```python
Train on 24803 samples, validate on 2755 samples
Epoch 1/10
24803/24803 [==============================] - 57s 2ms/sample - loss: 0.0786 - accuracy: 0.9729 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 2/10
24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0746 - accuracy: 0.9731 - val_loss: 0.0290 - val_accuracy: 0.9996
Epoch 3/10
24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0672 - accuracy: 0.9764 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 4/10
24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0601 - accuracy: 0.9789 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 5/10
24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0558 - accuracy: 0.9804 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 6/10
24803/24803 [==============================] - 57s 2ms/sample - loss: 0.0513 - accuracy: 0.9819 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 7/10
24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0452 - accuracy: 0.9849 - val_loss: 0.3190 - val_accuracy: 0.9985
Epoch 8/10
24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0404 - accuracy: 0.9858 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 9/10
24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0352 - accuracy: 0.9878 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
Epoch 10/10
24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0373 - accuracy: 0.9865 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
```
### Results
```python
accuracy = history.history['accuracy'][-1]*100
loss = history.history['loss'][-1]*100
val_accuracy = history.history['val_accuracy'][-1]*100
val_loss = history.history['val_loss'][-1]*100
print(
'Accuracy:', accuracy,
'\nLoss:', loss,
'\nValidation Accuracy:', val_accuracy,
'\nValidation Loss:', val_loss
)
```
```python
Accuracy: 98.64532351493835
Loss: 3.732407123270176
Validation Accuracy: 100.0
Validation Loss: 0.0
```
We have achieved 98% Accuracy!
[Link to Colab Notebook](https://colab.research.google.com/drive/1ZswDsxLwYZEnev89MzlL5Lwt6ut7iwp- "Colab Notebook")
|