summaryrefslogtreecommitdiff
path: root/Content/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.md
blob: 0435a6c9464e040dc993907427cea0452e9bf462 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
date: 2024-03-26 15:36
description: Quick derivation of the quadratic equation by completing the square 
tags: mathematics 
---

# Quadratic Formula Derivation

The standard form of a quadratic equation is:

$$
ax^2 + bx + c = 0
$$

Here, $a, b, c \in \mathbb{R}$, and $a \neq 0$

We begin by first dividing both sides by the coefficient $a$

$$
\implies x^2 + \frac{b}{a}x + \frac{c}{a} = 0
$$

We can rearrange the equation:

$$
x^2 + \frac{b}{a}x = - \frac{c}{a}
$$

We can then use the method of completing the square. ([Maths is Fun](https://www.mathsisfun.com/algebra/completing-square.html) has a really good explanation for this technique)

$$
x^2 + \frac{b}{a}x + (\frac{b}{2a})^2 = \frac{-c}{a} + (\frac{b}{2a})^2
$$

On our LHS, we can clearly recognize that it is the expanded form of $(x + d)^2$ i.e $x^2 + 2x\cdot d + d^2$

$$
\implies (x + \frac{b}{2a})^2 = \frac{-c}{a} + \frac{b^2}{4a^2} = \frac{-4ac + b^2}{4a^2}
$$

Taking the square root of both sides

$$
\begin{align*}
x + \frac{b}{2a} &= \frac{\sqrt{-4ac + b^2}}{2a} \\
x &= \frac{\pm \sqrt{-4ac + b^2} - b}{2a} \\
&= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\end{align*}
$$

This gives you the world famous quadratic formula:

$$
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$