summaryrefslogtreecommitdiff
path: root/docs/posts/2019-12-04-Google-Teachable-Machines.html
blob: 9793228f2c9950a07d5a7e6795740bb0acba2ce5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
<!DOCTYPE html>
<html lang="en">
<head>
    
    <link rel="stylesheet" href="https://unpkg.com/latex.css/style.min.css" />
    <link rel="stylesheet" href="/assets/main.css" />
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Image Classifier With Teachable Machines</title>
    <meta name="og:site_name" content="Navan Chauhan" />
    <link rel="canonical" href="https://web.navan.dev/posts/2019-12-04-Google-Teachable-Machines.html" />
    <meta name="twitter:url" content="https://web.navan.dev/posts/2019-12-04-Google-Teachable-Machines.html />
    <meta name="og:url" content="https://web.navan.dev/posts/2019-12-04-Google-Teachable-Machines.html" />
    <meta name="twitter:title" content="Image Classifier With Teachable Machines" />
    <meta name="og:title" content="Image Classifier With Teachable Machines" />
    <meta name="description" content="Tutorial on creating a custom image classifier quickly with Google Teachable Machines" />
    <meta name="twitter:description" content="Tutorial on creating a custom image classifier quickly with Google Teachable Machines" />
    <meta name="og:description" content="Tutorial on creating a custom image classifier quickly with Google Teachable Machines" />
    <meta name="twitter:card" content="summary_large_image" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <link rel="shortcut icon" href="/images/favicon.png" type="image/png" />
    <link rel="alternate" href="/feed.rss" type="application/rss+xml" title="Subscribe to Navan Chauhan" />
    <meta name="twitter:image" content="https://web.navan.dev/images/opengraph/posts/2019-12-04-Google-Teachable-Machines.png" />
    <meta name="og:image" content="https://web.navan.dev/images/opengraph/posts/2019-12-04-Google-Teachable-Machines.png" />
    <meta name="google-site-verification" content="LVeSZxz-QskhbEjHxOi7-BM5dDxTg53x2TwrjFxfL0k" />
    <script data-goatcounter="https://navanchauhan.goatcounter.com/count"
        async src="//gc.zgo.at/count.js"></script>
    <script defer data-domain="web.navan.dev" src="https://plausible.io/js/plausible.js"></script>
    <link rel="manifest" href="/manifest.json" />
    
</head>
<body>
    <center><nav style="display: block;">
|
<a href="/">home</a> |
<a href="/about/">about/links</a> |
<a href="/posts/">posts</a> |
<a href="/3D-Designs/">3D designs</a> |
<!--<a href="/publications/">publications</a> |-->
<!--<a href="/repo/">iOS repo</a> |-->
<a href="/feed.rss">RSS Feed</a> |
</nav>
</center>
    
<main>

	<h1>Image Classifier With Teachable Machines</h1>

<p>Made for Google Code-In</p>

<p><strong>Task Description</strong></p>

<p>Using Glitch and the Teachable Machines, build a Book Detector with Tensorflow.js. When a book is recognized, the code would randomly suggest a book/tell a famous quote from a book. Here is an example Project to get you started: https://glitch.com/~voltaic-acorn</p>

<h3>Details</h3>

<p>1) Collecting Data</p>

<p>Teachable Machine allows you to create your dataset just by using your webcam! I created a database consisting of three classes ( Three Books ) and approximately grabbed 100 pictures for each book/class</p>

<p><img src="/assets/gciTales/01-teachableMachines/01-collect.png" alt="" /></p>

<p>2) Training</p>

<p>Training on teachable machines is as simple as clicking the train button. I did not even have to modify any configurations. </p>

<p><img src="/assets/gciTales/01-teachableMachines/02-train.png" alt="" /></p>

<p>3) Finding Labels</p>

<p>Because I originally entered the entire name of the book and it's author's name as the label, the class name got truncated (Note to self, use shorter class names :p ). I then modified the code to print the modified label names in an alert box. </p>

<p><img src="/assets/gciTales/01-teachableMachines/03-label.png" alt="" /></p>

<p><img src="/assets/gciTales/01-teachableMachines/04-alert.png" alt="" /></p>

<p>4) Adding a suggestions function</p>

<p>I first added a text field on the main page and then modified the JavaScript file to suggest a similar book whenever the model predicted with an accuracy &gt;= 98% </p>

<p><img src="/assets/gciTales/01-teachableMachines/05-html.png" alt="" /></p>

<p><img src="/assets/gciTales/01-teachableMachines/06-js.png" alt="" /></p>

<p>5) Running!</p>

<p>Here it is running!</p>

<p><img src="/assets/gciTales/01-teachableMachines/07-eg.png" alt="" /></p>

<p><img src="/assets/gciTales/01-teachableMachines/08-eg.png" alt="" /></p>

<p>Remix this project:-</p>

<p>https://luminous-opinion.glitch.me</p>

	<blockquote>If you have scrolled this far, consider subscribing to my mailing list <a href="https://listmonk.navan.dev/subscription/form">here.</a> You can subscribe to either a specific type of post you are interested in, or subscribe to everything with the "Everything" list.</blockquote>
	<script data-isso="https://comments.navan.dev/"
        src="https://comments.navan.dev/js/embed.min.js"></script>
	<section id="isso-thread">
	    <noscript>Javascript needs to be activated to view comments.</noscript>
	</section>
</main>

    <script src="assets/manup.min.js"></script>
    <script src="/pwabuilder-sw-register.js"></script>    
</body>
</html>