blob: 1866c4cdf697df1b03b0eba7d0ef54e52c808e05 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
<!DOCTYPE html>
<html lang="en">
<head>
<link rel="stylesheet" href="/assets/main.css" />
<link rel="stylesheet" href="/assets/sakura.css" />
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Hey - Post - Making Predictions using Image Classifier (TensorFlow)</title>
<meta name="og:site_name" content="Navan Chauhan" />
<link rel="canonical" href="https://web.navan.dev/" />
<meta name="twitter:url" content="https://web.navan.dev/" />
<meta name="og:url" content="https://web.navan.dev/" />
<meta name="twitter:title" content="Hey - Post - Making Predictions using Image Classifier (TensorFlow)" />
<meta name="og:title" content="Hey - Post - Making Predictions using Image Classifier (TensorFlow)" />
<meta name="description" content=" Making predictions for image classification models built using TensorFlow " />
<meta name="twitter:description" content=" Making predictions for image classification models built using TensorFlow " />
<meta name="og:description" content=" Making predictions for image classification models built using TensorFlow " />
<meta name="twitter:card" content=" Making predictions for image classification models built using TensorFlow " />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="shortcut icon" href="/images/favicon.png" type="image/png" />
<link rel="alternate" href="/feed.rss" type="application/rss+xml" title="Subscribe to Navan Chauhan" />
<meta name="twitter:image" content="https://web.navan.dev/images/logo.png" />
<meta name="og:image" content="https://web.navan.dev/images/logo.png" />
<link rel="manifest" href="manifest.json" />
<meta name="google-site-verification" content="LVeSZxz-QskhbEjHxOi7-BM5dDxTg53x2TwrjFxfL0k" />
<script async src="//gc.zgo.at/count.js" data-goatcounter="https://navanchauhan.goatcounter.com/count"></script>
<script defer data-domain="web.navan.dev" src="https://plausible.io/js/plausible.js"></script>
</head>
<body>
<nav style="display: block;">
|
<a href="/">home</a> |
<a href="/about/">about/links</a> |
<a href="/posts/">posts</a> |
<a href="/publications/">publications</a> |
<a href="/repo/">iOS repo</a> |
<a href="/feed.rss">RSS Feed</a> |
</nav>
<main>
<h1>Making Predictions using Image Classifier (TensorFlow)</h1>
<p><em>This was tested on TF 2.x and works as of 2019-12-10</em></p>
<p>If you want to understand how to make your own custom image classifier, please refer to my previous post.</p>
<p>If you followed my last post, then you created a model which took an image of dimensions 50x50 as an input.</p>
<p>First we import the following if we have not imported these before</p>
<div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">cv2</span>
<span class="kn">import</span> <span class="nn">os</span>
</code></pre></div>
<p>Then we read the file using OpenCV.</p>
<div class="codehilite"><pre><span></span><code><span class="n">image</span><span class="o">=</span><span class="n">cv2</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="n">imagePath</span><span class="p">)</span>
</code></pre></div>
<p>The cv2. imread() function returns a NumPy array representing the image. Therefore, we need to convert it before we can use it.</p>
<div class="codehilite"><pre><span></span><code><span class="n">image_from_array</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">fromarray</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="s1">'RGB'</span><span class="p">)</span>
</code></pre></div>
<p>Then we resize the image</p>
<div class="codehilite"><pre><span></span><code><span class="n">size_image</span> <span class="o">=</span> <span class="n">image_from_array</span><span class="o">.</span><span class="n">resize</span><span class="p">((</span><span class="mi">50</span><span class="p">,</span><span class="mi">50</span><span class="p">))</span>
</code></pre></div>
<p>After this we create a batch consisting of only one image</p>
<div class="codehilite"><pre><span></span><code><span class="n">p</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span><span class="n">size_image</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
</code></pre></div>
<p>We then convert this uint8 datatype to a float32 datatype</p>
<div class="codehilite"><pre><span></span><code><span class="n">img</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">tf</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
</code></pre></div>
<p>Finally we make the prediction</p>
<div class="codehilite"><pre><span></span><code><span class="nb">print</span><span class="p">([</span><span class="s1">'Infected'</span><span class="p">,</span><span class="s1">'Uninfected'</span><span class="p">][</span><span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">img</span><span class="p">))])</span>
</code></pre></div>
<p><code>Infected</code></p>
<div class="commentbox"></div>
<script src="https://unpkg.com/commentbox.io/dist/commentBox.min.js"></script>
<script>commentBox('my-project-id')</script>
</main>
<script src="assets/manup.min.js"></script>
<script src="/pwabuilder-sw-register.js"></script>
</body>
</html>
|