blob: bb2bc8e5555336139cc458d9c213e57b5df6c003 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
<title>Quadratic Formula Derivation</title>
<!--
<link rel="stylesheet" href="https://unpkg.com/latex.css/style.min.css" />
-->
<link rel="stylesheet" href="/assets/c-hyde.css" />
<link rel="stylesheet" href="http://fonts.googleapis.com/css?family=PT+Sans:400,400italic,700|Abril+Fatface">
<link rel="stylesheet" href="/assets/main.css" />
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="og:site_name" content="Navan Chauhan" />
<link rel="canonical" href="https://web.navan.dev/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.html" />
<meta name="twitter:url" content="https://web.navan.dev/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.html" />
<meta name="og:url" content="https://web.navan.dev/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.html" />
<meta name="twitter:title" content="Quadratic Formula Derivation" />
<meta name="og:title" content="Quadratic Formula Derivation" />
<meta name="description" content="Quick derivation of the quadratic equation by completing the square" />
<meta name="twitter:description" content="Quick derivation of the quadratic equation by completing the square" />
<meta name="og:description" content="Quick derivation of the quadratic equation by completing the square" />
<meta name="twitter:card" content="summary_large_image" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="shortcut icon" href="/images/favicon.png" type="image/png" />
<link rel="alternate" href="/feed.rss" type="application/rss+xml" title="Subscribe to Navan Chauhan" />
<meta name="twitter:image" content="https://web.navan.dev/images/opengraph/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.png" />
<meta name="og:image" content="https://web.navan.dev/images/opengraph/posts/2024-03-26-Derivation-of-the-Quadratic-Equation.png" />
<meta name="google-site-verification" content="LVeSZxz-QskhbEjHxOi7-BM5dDxTg53x2TwrjFxfL0k" />
<script data-goatcounter="https://navanchauhan.goatcounter.com/count"
async src="//gc.zgo.at/count.js"></script>
<script defer data-domain="web.navan.dev" src="https://plausible.io/js/plausible.js"></script>
<link rel="manifest" href="/manifest.json" />
</head>
<body class="theme-base-0d">
<div class="sidebar">
<div class="container sidebar-sticky">
<div class="sidebar-about">
<h1><a href="/">Navan</a></h1>
<p class="lead">Something Funny</p>
</div>
<ul class="sidebar-nav">
<li><a class="sidebar-nav-item" href="/about/">about/links</a></li>
<li><a class="sidebar-nav-item" href="/posts/">posts</a></li>
<li><a class="sidebar-nav-item" href="/3D-Designs/">3D designs</a></li>
<li><a class="sidebar-nav-item" href="/feed.rss">RSS Feed</a></li>
<li><a class="sidebar-nav-item" href="/colophon/">colophon</a></li>
</ul>
<p>© 2024. All rights reserved.
</div>
</div>
<div class="content container">
<div class="post">
<h1 id="quadratic-formula-derivation">Quadratic Formula Derivation</h1>
<p>The standard form of a quadratic equation is:</p>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>0</mn></mrow></math>
<p>Here, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>∈</mo><mi>ℝ</mi></mrow></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>a</mi><mo>≠</mo><mn>0</mn></mrow></math></p>
<p>We begin by first dividing both sides by the coefficient <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>a</mi></mrow></math></p>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mi>⟹</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mi>x</mi><mo>+</mo><mfrac><mrow><mi>c</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mo>=</mo><mn>0</mn></mrow></math>
<p>We can rearrange the equation:</p>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mi>x</mi><mo>=</mo><mo>−</mo><mfrac><mrow><mi>c</mi></mrow><mrow><mi>a</mi></mrow></mfrac></mrow></math>
<p>We can then use the method of completing the square. (<a rel="noopener" target="_blank" href="https://www.mathsisfun.com/algebra/completing-square.html">Maths is Fun</a> has a really good explanation for this technique)</p>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mi>x</mi><mo>+</mo><mo stretchy="false">(</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mo>−</mo><mi>c</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mo>+</mo><mo stretchy="false">(</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></math>
<p>On our LHS, we can clearly recognize that it is the expanded form of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>d</mi><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></math> i.e <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>x</mi><mi>·</mi><mi>d</mi><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></mrow></math></p>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mi>⟹</mi><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mo>−</mo><mi>c</mi></mrow><mrow><mi>a</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><msup><mi>b</mi><mn>2</mn></msup></mrow><mrow><mn>4</mn><msup><mi>a</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow><mrow><mn>4</mn><msup><mi>a</mi><mn>2</mn></msup></mrow></mfrac></mrow></math>
<p>Taking the square root of both sides</p>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mtable displaystyle="true" rowspacing="3pt" columnspacing="0em 2em"><mtr><mtd columnalign="right"><mi>x</mi><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mtd><mtd columnalign="left"><mi /><mo>=</mo><mfrac><mrow><msqrt><mrow><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></msqrt></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="right"><mi>x</mi></mtd><mtd columnalign="left"><mi /><mo>=</mo><mfrac><mrow><mi>±</mi><msqrt><mrow><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></msqrt><mo>−</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="right" /><mtd columnalign="left"><mi /><mo>=</mo><mfrac><mrow><mo>−</mo><mi>b</mi><mi>±</mi><msqrt><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi></mrow></msqrt></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mtd></mtr></mtable></mrow></math>
<p>This gives you the world famous quadratic formula:</p>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mi>x</mi><mo>=</mo><mfrac><mrow><mo>−</mo><mi>b</mi><mi>±</mi><msqrt><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi></mrow></msqrt></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mrow></math>
</div>
<blockquote>If you have scrolled this far, consider subscribing to my mailing list <a href="https://listmonk.navan.dev/subscription/form">here.</a> You can subscribe to either a specific type of post you are interested in, or subscribe to everything with the "Everything" list.</blockquote>
<script data-isso="https://comments.navan.dev/"
src="https://comments.navan.dev/js/embed.min.js"></script>
<section id="isso-thread">
<noscript>Javascript needs to be activated to view comments.</noscript>
</section>
</div>
<script src="assets/manup.min.js"></script>
<script src="/pwabuilder-sw-register.js"></script>
</body>
</html>
|