1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
|
<?xml version="1.0" encoding="UTF-8"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:content="http://purl.org/rss/1.0/modules/content"><channel><title>Navan Chauhan</title><description>Welcome to my personal fragment of the internet. Majority of the posts should be complete.</description><link>https://navanchauhan.github.io/</link><language>en</language><lastBuildDate>Mon, 1 Jun 2020 00:48:18 +0530</lastBuildDate><pubDate>Mon, 1 Jun 2020 00:48:18 +0530</pubDate><ttl>250</ttl><atom:link href="https://navanchauhan.github.io/feed.rss" rel="self" type="application/rss+xml"/><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2020-05-31-compiling-open-babel-on-ios</guid><title>Compiling Open Babel on iOS</title><description>Compiling Open Babel on iOS</description><link>https://navanchauhan.github.io/posts/2020-05-31-compiling-open-babel-on-ios</link><pubDate>Sun, 31 May 2020 11:30:00 +0530</pubDate><content:encoded><![CDATA[<h1>Compiling Open Babel on iOS</h1><p>Due to the fact that my summer vacations started today, I had the brilliant idea of trying to run open babel on my iPad. To give a little background, I had tried to compile AutoDock Vina using a cross-compiler but I had miserably failed.</p><p>I am running the Checkr1n jailbreak on my iPad and the Unc0ver jailbreak on my phone.</p><h2>But Why?</h2><p>Well, just because I can. This is literally the only reason I tried compiling it and also partially because in the long run I want to compile AutoDock Vina so I can do Molecular Docking on the go.</p><h2>Let's Go!</h2><p>How hard can it be to compile open babel right? It is just a simple software with clear and concise build instructions. I just need to use <code>cmake</code> to build and the <code>make</code> to install.</p><p>It is 11 AM in the morning. I install <code>clang, cmake and make</code> from the Sam Bingner's repository, fired up ssh, downloaded the source code and ran the build command.`clang</p><h3>Fail No. 1</h3><p>I couldn't even get cmake to run, I did a little digging arond StackOverflow and founf that I needed the iOS SDK, sure no problem. I waited for Xcode to update and transfered the <code>/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS.sdk</code> to <code>/var/sdks/</code> on my iPad</p><p>Them I told cmake that this is the location for my SDK π . Succesful! Now I just needed to use make.</p><h3>Fail No. 2</h3><p>It was giving the error that thread-local-storage was not supported on this device.</p><pre><code><div class="highlight"><span></span><span class="o">[</span> <span class="m">0</span>%<span class="o">]</span> Building CXX object src/CMakeFiles/openbabel.dir/alias.cpp.o
<span class="o">[</span> <span class="m">1</span>%<span class="o">]</span> Building CXX object src/CMakeFiles/openbabel.dir/atom.cpp.o
In file included from /var/root/obabel/ob-src/src/atom.cpp:28:
In file included from /var/root/obabel/ob-src/include/openbabel/ring.h:29:
/var/root/obabel/ob-src/include/openbabel/typer.h:70:1: error: thread-local storage is not supported <span class="k">for</span> the current target
THREAD_LOCAL OB_EXTERN OBAtomTyper atomtyper<span class="p">;</span>
^
/var/root/obabel/ob-src/include/openbabel/mol.h:35:24: note: expanded from macro <span class="s1">'THREAD_LOCAL'</span>
<span class="c1"># define THREAD_LOCAL thread_local</span>
^
In file included from /var/root/obabel/ob-src/src/atom.cpp:28:
In file included from /var/root/obabel/ob-src/include/openbabel/ring.h:29:
/var/root/obabel/ob-src/include/openbabel/typer.h:84:1: error: thread-local storage is not supported <span class="k">for</span> the current target
THREAD_LOCAL OB_EXTERN OBAromaticTyper aromtyper<span class="p">;</span>
^
/var/root/obabel/ob-src/include/openbabel/mol.h:35:24: note: expanded from macro <span class="s1">'THREAD_LOCAL'</span>
<span class="c1"># define THREAD_LOCAL thread_local</span>
^
/var/root/obabel/ob-src/src/atom.cpp:107:10: error: thread-local storage is not supported <span class="k">for</span> the current target
extern THREAD_LOCAL OBAromaticTyper aromtyper<span class="p">;</span>
^
/var/root/obabel/ob-src/include/openbabel/mol.h:35:24: note: expanded from macro <span class="s1">'THREAD_LOCAL'</span>
<span class="c1"># define THREAD_LOCAL thread_local</span>
^
/var/root/obabel/ob-src/src/atom.cpp:108:10: error: thread-local storage is not supported <span class="k">for</span> the current target
extern THREAD_LOCAL OBAtomTyper atomtyper<span class="p">;</span>
^
/var/root/obabel/ob-src/include/openbabel/mol.h:35:24: note: expanded from macro <span class="s1">'THREAD_LOCAL'</span>
<span class="c1"># define THREAD_LOCAL thread_local</span>
^
/var/root/obabel/ob-src/src/atom.cpp:109:10: error: thread-local storage is not supported <span class="k">for</span> the current target
extern THREAD_LOCAL OBPhModel phmodel<span class="p">;</span>
^
/var/root/obabel/ob-src/include/openbabel/mol.h:35:24: note: expanded from macro <span class="s1">'THREAD_LOCAL'</span>
<span class="c1"># define THREAD_LOCAL thread_local</span>
^
<span class="m">5</span> errors generated.
make<span class="o">[</span><span class="m">2</span><span class="o">]</span>: *** <span class="o">[</span>src/CMakeFiles/openbabel.dir/build.make:76: src/CMakeFiles/openbabel.dir/atom.cpp.o<span class="o">]</span> Error <span class="m">1</span>
make<span class="o">[</span><span class="m">1</span><span class="o">]</span>: *** <span class="o">[</span>CMakeFiles/Makefile2:1085: src/CMakeFiles/openbabel.dir/all<span class="o">]</span> Error <span class="m">2</span>
make: *** <span class="o">[</span>Makefile:129: all<span class="o">]</span> Error <span class="m">2</span>
</div></code></pre><p>Strange but it is alright, there is nothing that hasn't been answered on the internet.</p><p>I did a little digging around and could not find a solution π</p><p>As a temporary fix, I disabled multithreading by going and commenting the lines in the source code.</p><img src="https://navanchauhan.github.io//assets/posts/open-babel/s1.png" alt=""Open-Babel running on my iPad""/><h2>Packaging as a deb</h2><p>This was pretty straight forward, I tried installing it on my iPad and it was working pretty smoothly.</p><h2>Moment of Truth</h2><p>So I airdropped the .deb to my phone and tried installing it, the installation was succesful but when I tried <code>obabel</code> it just abborted.</p><img src="https://navanchauhan.github.io//assets/posts/open-babel/s2.jpg" alt=""Open Babel crashing""/><p>Turns out because I had created an install target of a seprate folder while compiling, the binaries were refferencing a non-existing dylib rather than those in the /usr/lib folder. As a quick workaround I transferred the deb folder to my laptop and used otool and install_name tool: <code>install_name_tool -change /var/root/obabel/ob-build/lib/libopenbabel.7.dylib /usr/lib/libopenbabel.7.dylib</code> for all the executables and then signed them using jtool</p><p>I then installed it and everything went smoothly, I even ran <code>obabel</code> and it executed perfectly, showing the version number 3.1.0 βοΈ Ahh, smooth victory.</p><p>Nope. When I tried converting from SMILES to pdbqt, it gave an error saying plugin not found. This was weird.</p><img src="https://navanchauhan.github.io//assets/posts/open-babel/s3.jpg" alt=""Open Babel Plugin Error""/><p>So I just copied the entire build folder from my iPad to my phone and tried runnig it. Oops, Apple Sandbox Error, Oh no!</p><p>I spent 2 hours around this problem, only to see the documentation and relaise I hadn't setup the environment variable π€¦ββοΈ</p><h2>The Final Fix ( For Now )</h2><pre><code><div class="highlight"><span></span><span class="nb">export</span> <span class="nv">BABEL_DATADIR</span><span class="o">=</span><span class="s2">"/usr/share/openbabel/3.1.0"</span>
<span class="nb">export</span> <span class="nv">BABEL_LIBDIR</span><span class="o">=</span><span class="s2">"/usr/lib/openbabel/3.1.0"</span>
</div></code></pre><p>This was the tragedy of trying to compile something without knowing enough about compiling. It is 11:30 as of writing this. Something as trivial as this should not have taken me so long. Am I going to try to compile AutoDock Vina next? π€ Maybe.</p><p>Also, if you want to try Open Babel on you jailbroken iDevice, install the package from my repository ( You, need to run the above mentioned final fix :p ). This was tested on iOS 13.5, I cannot tell if it will work on others or not.</p><p>Hopefully, I add some more screenshots to this post.</p><p>Edit 1: Added Screenshots, had to replicate the errors.</p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2020-04-13-Fixing-X11-Error-AmberTools-macOS</guid><title>Fixing X11 Error on macOS Catalina for AmberTools 18/19</title><description>Fixing Could not find the X11 libraries; you may need to edit config.h, AmberTools macOS Catalina</description><link>https://navanchauhan.github.io/posts/2020-04-13-Fixing-X11-Error-AmberTools-macOS</link><pubDate>Mon, 13 Apr 2020 11:41:00 +0530</pubDate><content:encoded><![CDATA[<h1>Fixing X11 Error on macOS Catalina for AmberTools 18/19</h1><p>I was trying to install AmberTools on my macOS Catalina Installation. Running <code>./configure -macAccelerate clang</code> gave me an error that it could not find X11 libraries, even though <code>locate libXt</code> showed that my installation was correct.</p><p>Error:</p><pre><code><div class="highlight"><span></span>Could not find the X11 libraries<span class="p">;</span> you may need to edit config.h
to <span class="nb">set</span> the XHOME and XLIBS variables.
Error: The X11 libraries are not in the usual location !
To search <span class="k">for</span> them try the command: locate libXt
On new Fedora OS<span class="s1">'s install the libXt-devel libXext-devel</span>
<span class="s1"> libX11-devel libICE-devel libSM-devel packages.</span>
<span class="s1"> On old Fedora OS'</span>s install the xorg-x11-devel package.
On RedHat OS<span class="s1">'s install the XFree86-devel package.</span>
<span class="s1"> On Ubuntu OS'</span>s install the xorg-dev and xserver-xorg packages.
...more info <span class="k">for</span> various linuxes at ambermd.org/ubuntu.html
To build Amber without XLEaP, re-run configure with <span class="err">'</span>-noX11:
./configure -noX11 --with-python /usr/local/bin/python3 -macAccelerate clang
Configure failed due to the errors above!
</div></code></pre><p>I searcehd on Google for a solution on their, sadly there was not even a single thread which had a solution about this error.</p><h2>The Fix</h2><p>Simply reinstalling XQuartz using homebrew fixed the error <code>brew cask reinstall xquartz</code></p><p>If you do not have xquartz installed, you need to run <code>brew cask install xquartz</code></p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/publications/2020-03-17-Possible-Drug-Candidates-COVID-19</guid><title>Possible Drug Candidates for COVID-19</title><description>COVID-19, has been officially labeled as a pandemic by the World Health Organisation. This paper presents cloperastine and vigabatrin as two possible drug candidates for combatting the disease along with the process by which they were discovered.</description><link>https://navanchauhan.github.io/publications/2020-03-17-Possible-Drug-Candidates-COVID-19</link><pubDate>Tue, 17 Mar 2020 17:40:00 +0530</pubDate><content:encoded><![CDATA[<h1>Possible Drug Candidates for COVID-19</h1><p>This is still a pre-print.</p><p><a href="https://chemrxiv.org/articles/Possible_Drug_Candidates_for_COVID-19/11985231">Download paper here</a></p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/publications/2020-03-14-generating-vaporwave</guid><title>Is it possible to programmatically generate Vaporwave?</title><description>This paper is about programmaticaly generating Vaporwave.</description><link>https://navanchauhan.github.io/publications/2020-03-14-generating-vaporwave</link><pubDate>Sat, 14 Mar 2020 22:23:00 +0530</pubDate><content:encoded><![CDATA[<h1>Is it possible to programmatically generate Vaporwave?</h1><p>This is still a pre-print.</p><p><a href="https://indiarxiv.org/9um2r/">Download paper here</a></p><p>Recommended citation:</p><h3>APA</h3><pre><code><div class="highlight"><span></span>Chauhan, N. <span class="o">(</span><span class="m">2020</span>, March <span class="m">15</span><span class="o">)</span>. Is it possible to programmatically generate Vaporwave?. https://doi.org/10.35543/osf.io/9um2r
</div></code></pre><h3>MLA</h3><pre><code><div class="highlight"><span></span>Chauhan, Navan. βIs It Possible to Programmatically Generate Vaporwave?.β IndiaRxiv, <span class="m">15</span> Mar. <span class="m">2020</span>. Web.
</div></code></pre><h3>Chicago</h3><pre><code><div class="highlight"><span></span>Chauhan, Navan. <span class="m">2020</span>. βIs It Possible to Programmatically Generate Vaporwave?.β IndiaRxiv. March <span class="m">15</span>. doi:10.35543/osf.io/9um2r.
</div></code></pre><h3>Bibtex</h3><pre><code><div class="highlight"><span></span>@misc<span class="o">{</span>chauhan_2020,
<span class="nv">title</span><span class="o">={</span>Is it possible to programmatically generate Vaporwave?<span class="o">}</span>,
<span class="nv">url</span><span class="o">={</span>indiarxiv.org/9um2r<span class="o">}</span>,
<span class="nv">DOI</span><span class="o">={</span><span class="m">10</span>.35543/osf.io/9um2r<span class="o">}</span>,
<span class="nv">publisher</span><span class="o">={</span>IndiaRxiv<span class="o">}</span>,
<span class="nv">author</span><span class="o">={</span>Chauhan, Navan<span class="o">}</span>,
<span class="nv">year</span><span class="o">={</span><span class="m">2020</span><span class="o">}</span>,
<span class="nv">month</span><span class="o">={</span>Mar<span class="o">}</span>
<span class="o">}</span>
</div></code></pre>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2020-03-08-Making-Vaporwave-Track</guid><title>Making My First Vaporwave Track (Remix)</title><description>I made my first vaporwave remix</description><link>https://navanchauhan.github.io/posts/2020-03-08-Making-Vaporwave-Track</link><pubDate>Sun, 8 Mar 2020 23:17:00 +0530</pubDate><content:encoded><![CDATA[<h1>Making My First Vaporwave Track (Remix)</h1><p>I finally completed my first quick and dirty vaporwave remix of "I Want It That Way" by the Backstreet Boys</p><h1>V A P O R W A V E</h1><p>Vaporwave is all about A E S T H E T I C S. Vaporwave is a type of music genre that emmerged as a parody of Chillwave, shared more as a meme rather than a proper musical genre. Of course this changed as the genre become mature</p><h1>How to Vaporwave</h1><p>The first track which is considered to be actual Vaporwave is Ramona Xavier's Macintosh Plus, this unspokenly set the the guidelines for making Vaporwave</p><ul><li>Take a 1980s RnB song</li><li>Slow it down</li><li>Add Bass and Trebble</li><li>Add again</li><li>Add Reverb ( make sure its wet )</li></ul><p>There you have your very own Vaporwave track.</p><p>( Now, there are some tracks being produced which are not remixes and are original )</p><h1>My Remix</h1><iframe width="300" height="202" src="https://www.bandlab.com/embed/?id=aa91e786-6361-ea11-a94c-0003ffd1cad8&blur=false" frameborder="0" allowfullscreen></iframe><h1>Where is the Programming?</h1><p>The fact that there are steps on producing Vaporwave, this gave me the idea that Vaporwave can actually be made using programming, stay tuned for when I publish the program which I am working on ( Generating A E S T H E T I C artwork and remixes)</p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2020-03-03-Playing-With-Android-TV</guid><title>Tinkering with an Android TV</title><description>Tinkering with an Android TV</description><link>https://navanchauhan.github.io/posts/2020-03-03-Playing-With-Android-TV</link><pubDate>Tue, 3 Mar 2020 18:37:00 +0530</pubDate><content:encoded><![CDATA[<h1>Tinkering with an Android TV</h1><p>So I have an Android TV, this posts covers everything I have tried on it</p><h2>Contents</h2><ol><li><a href="#IP-Address">Getting TV's IP Address</a></li><li><a href="#Developer-Settings">Enable Developer Settings</a></li><li><a href="#Enable-ADB">Enable ADB</a></li><li><a href="#Connect-ADB">Connect ADB</a></li><li><a href="#">Manipulating Packages</a></li></ol><h2>IP-Address</h2><p><em>These steps should be similar for all Android-TVs</em></p><ul><li>Go To Settings</li><li>Go to Network</li><li>Advanced Settings</li><li>Network Status</li><li>Note Down IP-Address</li></ul><p>The other option is to go to your router's server page and get connected devices</p><h2>Developer-Settings</h2><ul><li>Go To Settings</li><li>About</li><li>Continously click on the "Build" option until it says "You are a Developer"</li></ul><h2>Enable-ADB</h2><ul><li>Go to Settings</li><li>Go to Developer Options</li><li>Scroll untill you find ADB Debugging and enable that option</li></ul><h2>Connect-ADB</h2><ul><li>Open Terminal (Make sure you have ADB installed)</li><li>Enter the following command <code>adb connect <IP_ADDRESS></code></li><li>To test the connection run <code>adb logcat</code></li></ul><h2>Manipulating Apps / Packages</h2><h3>Listing Packages</h3><ul><li><code>adb shell</code></li><li><code>pm list packages</code></li></ul><h3>Installing Packages</h3><ul><li><code>adb install -r package.apk</code></li></ul><h3>Uninstalling Packages</h3><ul><li><code>adb uninstall com.company.yourpackagename</code></li></ul>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2020-01-19-Connect-To-Bluetooth-Devices-Linux-Terminal</guid><title>How to setup Bluetooth on a Raspberry Pi</title><description>Connecting to Bluetooth Devices using terminal, tested on Raspberry Pi Zero W</description><link>https://navanchauhan.github.io/posts/2020-01-19-Connect-To-Bluetooth-Devices-Linux-Terminal</link><pubDate>Sun, 19 Jan 2020 15:27:00 +0530</pubDate><content:encoded><![CDATA[<h1>How to setup Bluetooth on a Raspberry Pi</h1><p><em>This was tested on a Raspberry Pi Zero W</em></p><h2>Enter in the Bluetooth Mode</h2><p><code>pi@raspberrypi:~ $ bluetoothctl</code></p><p><code>[bluetooth]# agent on</code></p><p><code>[bluetooth]# default-agent</code></p><p><code>[bluetooth]# scan on</code></p><h2>To Pair</h2><p>While being in bluetooth mode</p><p><code>[bluetooth]# pair XX:XX:XX:XX:XX:XX</code></p><p>To Exit out of bluetoothctl anytime, just type exit</p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2020-01-16-Image-Classifier-Using-Turicreate</guid><title>Creating a Custom Image Classifier using Turicreate to detect Smoke and Fire</title><description>Tutorial on creating a custom Image Classifier using Turicreate and a dataset from Kaggle</description><link>https://navanchauhan.github.io/posts/2020-01-16-Image-Classifier-Using-Turicreate</link><pubDate>Thu, 16 Jan 2020 10:36:00 +0530</pubDate><content:encoded><![CDATA[<h1>Creating a Custom Image Classifier using Turicreate to detect Smoke and Fire</h1><p><em>For setting up Kaggle with Google Colab, please refer to <a href="https://navanchauhan.github.io//posts/2020-01-15-Setting-up-Kaggle-to-use-with-Colab/"> my previous post</a></em></p><h2>Dataset</h2><h3>Mounting Google Drive</h3><pre><code><div class="highlight"><span></span><span class="kn">import</span> <span class="nn">os</span>
<span class="kn">from</span> <span class="nn">google.colab</span> <span class="kn">import</span> <span class="n">drive</span>
<span class="n">drive</span><span class="o">.</span><span class="n">mount</span><span class="p">(</span><span class="s1">'/content/drive'</span><span class="p">)</span>
</div></code></pre><h3>Downloading Dataset from Kaggle</h3><pre><code><div class="highlight"><span></span><span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">'KAGGLE_CONFIG_DIR'</span><span class="p">]</span> <span class="o">=</span> <span class="s2">"/content/drive/My Drive/"</span>
<span class="err">!</span><span class="n">kaggle</span> <span class="n">datasets</span> <span class="n">download</span> <span class="n">ashutosh69</span><span class="o">/</span><span class="n">fire</span><span class="o">-</span><span class="ow">and</span><span class="o">-</span><span class="n">smoke</span><span class="o">-</span><span class="n">dataset</span>
<span class="err">!</span><span class="n">unzip</span> <span class="s2">"fire-and-smoke-dataset.zip"</span>
</div></code></pre><h2>Pre-Processing</h2><pre><code><div class="highlight"><span></span><span class="nt">!mkdir</span><span class="na"> default smoke fire</span>
</div></code></pre><p><br></p><pre><code><div class="highlight"><span></span><span class="nt">!ls</span><span class="na"> data/data/img_data/train/default/*.jpg</span>
</div></code></pre><p><br></p><pre><code><div class="highlight"><span></span><span class="nt">img_1002.jpg</span><span class="na"> img_20.jpg img_519.jpg img_604.jpg img_80.jpg</span>
<span class="na">img_1003.jpg img_21.jpg img_51.jpg img_60.jpg img_8.jpg</span>
<span class="na">img_1007.jpg img_22.jpg img_520.jpg img_61.jpg img_900.jpg</span>
<span class="na">img_100.jpg img_23.jpg img_521.jpg 'img_62 (2).jpg' img_920.jpg</span>
<span class="na">img_1014.jpg img_24.jpg 'img_52 (2).jpg' img_62.jpg img_921.jpg</span>
<span class="na">img_1018.jpg img_29.jpg img_522.jpg 'img_63 (2).jpg' img_922.jpg</span>
<span class="na">img_101.jpg img_3000.jpg img_523.jpg img_63.jpg img_923.jpg</span>
<span class="na">img_1027.jpg img_335.jpg img_524.jpg img_66.jpg img_924.jpg</span>
<span class="na">img_102.jpg img_336.jpg img_52.jpg img_67.jpg img_925.jpg</span>
<span class="na">img_1042.jpg img_337.jpg img_530.jpg img_68.jpg img_926.jpg</span>
<span class="na">img_1043.jpg img_338.jpg img_531.jpg img_700.jpg img_927.jpg</span>
<span class="na">img_1046.jpg img_339.jpg 'img_53 (2).jpg' img_701.jpg img_928.jpg</span>
<span class="na">img_1052.jpg img_340.jpg img_532.jpg img_702.jpg img_929.jpg</span>
<span class="na">img_107.jpg img_341.jpg img_533.jpg img_703.jpg img_930.jpg</span>
<span class="na">img_108.jpg img_3.jpg img_537.jpg img_704.jpg img_931.jpg</span>
<span class="na">img_109.jpg img_400.jpg img_538.jpg img_705.jpg img_932.jpg</span>
<span class="na">img_10.jpg img_471.jpg img_539.jpg img_706.jpg img_933.jpg</span>
<span class="na">img_118.jpg img_472.jpg img_53.jpg img_707.jpg img_934.jpg</span>
<span class="na">img_12.jpg img_473.jpg img_540.jpg img_708.jpg img_935.jpg</span>
<span class="na">img_14.jpg img_488.jpg img_541.jpg img_709.jpg img_938.jpg</span>
<span class="na">img_15.jpg img_489.jpg 'img_54 (2).jpg' img_70.jpg img_958.jpg</span>
<span class="na">img_16.jpg img_490.jpg img_542.jpg img_710.jpg img_971.jpg</span>
<span class="na">img_17.jpg img_491.jpg img_543.jpg 'img_71 (2).jpg' img_972.jpg</span>
<span class="na">img_18.jpg img_492.jpg img_54.jpg img_71.jpg img_973.jpg</span>
<span class="na">img_19.jpg img_493.jpg 'img_55 (2).jpg' img_72.jpg img_974.jpg</span>
<span class="na">img_1.jpg img_494.jpg img_55.jpg img_73.jpg img_975.jpg</span>
<span class="na">img_200.jpg img_495.jpg img_56.jpg img_74.jpg img_980.jpg</span>
<span class="na">img_201.jpg img_496.jpg img_57.jpg img_75.jpg img_988.jpg</span>
<span class="na">img_202.jpg img_497.jpg img_58.jpg img_76.jpg img_9.jpg</span>
<span class="na">img_203.jpg img_4.jpg img_59.jpg img_77.jpg</span>
<span class="na">img_204.jpg img_501.jpg img_601.jpg img_78.jpg</span>
<span class="na">img_205.jpg img_502.jpg img_602.jpg img_79.jpg</span>
<span class="na">img_206.jpg img_50.jpg img_603.jpg img_7.jpg</span>
</div></code></pre><p>The image files are not actually JPEG, thus we first need to save them in the correct format for Turicreate</p><pre><code><div class="highlight"><span></span><span class="kn">from</span> <span class="nn">PIL</span> <span class="kn">import</span> <span class="n">Image</span>
<span class="kn">import</span> <span class="nn">glob</span>
<span class="n">folders</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"default"</span><span class="p">,</span><span class="s2">"smoke"</span><span class="p">,</span><span class="s2">"fire"</span><span class="p">]</span>
<span class="k">for</span> <span class="n">folder</span> <span class="ow">in</span> <span class="n">folders</span><span class="p">:</span>
<span class="n">n</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">for</span> <span class="n">file</span> <span class="ow">in</span> <span class="n">glob</span><span class="o">.</span><span class="n">glob</span><span class="p">(</span><span class="s2">"./data/data/img_data/train/"</span> <span class="o">+</span> <span class="n">folder</span> <span class="o">+</span> <span class="s2">"/*.jpg"</span><span class="p">):</span>
<span class="n">im</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">open</span><span class="p">(</span><span class="n">file</span><span class="p">)</span>
<span class="n">rgb_im</span> <span class="o">=</span> <span class="n">im</span><span class="o">.</span><span class="n">convert</span><span class="p">(</span><span class="s1">'RGB'</span><span class="p">)</span>
<span class="n">rgb_im</span><span class="o">.</span><span class="n">save</span><span class="p">((</span><span class="n">folder</span> <span class="o">+</span> <span class="s2">"/"</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">n</span><span class="p">)</span> <span class="o">+</span> <span class="s2">".jpg"</span><span class="p">),</span> <span class="n">quality</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span>
<span class="n">n</span> <span class="o">+=</span><span class="mi">1</span>
<span class="k">for</span> <span class="n">file</span> <span class="ow">in</span> <span class="n">glob</span><span class="o">.</span><span class="n">glob</span><span class="p">(</span><span class="s2">"./data/data/img_data/train/"</span> <span class="o">+</span> <span class="n">folder</span> <span class="o">+</span> <span class="s2">"/*.jpg"</span><span class="p">):</span>
<span class="n">im</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">open</span><span class="p">(</span><span class="n">file</span><span class="p">)</span>
<span class="n">rgb_im</span> <span class="o">=</span> <span class="n">im</span><span class="o">.</span><span class="n">convert</span><span class="p">(</span><span class="s1">'RGB'</span><span class="p">)</span>
<span class="n">rgb_im</span><span class="o">.</span><span class="n">save</span><span class="p">((</span><span class="n">folder</span> <span class="o">+</span> <span class="s2">"/"</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">n</span><span class="p">)</span> <span class="o">+</span> <span class="s2">".jpg"</span><span class="p">),</span> <span class="n">quality</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span>
<span class="n">n</span> <span class="o">+=</span><span class="mi">1</span>
</div></code></pre><p><br></p><pre><code><div class="highlight"><span></span><span class="nt">!mkdir</span><span class="na"> train</span>
<span class="na">!mv default ./train</span>
<span class="na">!mv smoke ./train</span>
<span class="na">!mv fire ./train</span>
</div></code></pre><h2>Making the Image Classifier</h2><h3>Making an SFrame</h3><pre><code><div class="highlight"><span></span><span class="nt">!pip</span><span class="na"> install turicreate</span>
</div></code></pre><p><br></p><pre><code><div class="highlight"><span></span><span class="kn">import</span> <span class="nn">turicreate</span> <span class="k">as</span> <span class="nn">tc</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">tc</span><span class="o">.</span><span class="n">image_analysis</span><span class="o">.</span><span class="n">load_images</span><span class="p">(</span><span class="s2">"./train"</span><span class="p">,</span> <span class="n">with_path</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">data</span><span class="p">[</span><span class="s2">"label"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="s2">"path"</span><span class="p">]</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">path</span><span class="p">:</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">basename</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">dirname</span><span class="p">(</span><span class="n">path</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">data</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">'fire-smoke.sframe'</span><span class="p">)</span>
</div></code></pre><p><br></p><pre><code><div class="highlight"><span></span><span class="nt">+-------------------------+------------------------+</span>
<span class="err">| path | image |</span>
<span class="nt">+-------------------------+------------------------+</span>
<span class="err">| ./train/default/1.jpg | Height: 224 Width: 224 |</span>
<span class="err">| ./train/default/10.jpg | Height: 224 Width: 224 |</span>
<span class="err">| ./train/default/100.jpg | Height: 224 Width: 224 |</span>
<span class="err">| ./train/default/101.jpg | Height: 224 Width: 224 |</span>
<span class="err">| ./train/default/102.jpg | Height: 224 Width: 224 |</span>
<span class="err">| ./train/default/103.jpg | Height: 224 Width: 224 |</span>
<span class="err">| ./train/default/104.jpg | Height: 224 Width: 224 |</span>
<span class="err">| ./train/default/105.jpg | Height: 224 Width: 224 |</span>
<span class="err">| ./train/default/106.jpg | Height: 224 Width: 224 |</span>
<span class="err">| ./train/default/107.jpg | Height: 224 Width: 224 |</span>
<span class="nt">+-------------------------+------------------------+</span>
<span class="nt">[2028</span><span class="na"> rows x 2 columns]</span>
<span class="na">Note</span><span class="p">:</span><span class="err"> </span><span class="nc">Only</span><span class="err"> </span><span class="nc">the</span><span class="err"> </span><span class="nc">head</span><span class="err"> </span><span class="nc">of</span><span class="err"> </span><span class="nc">the</span><span class="err"> </span><span class="nc">SFrame</span><span class="err"> </span><span class="nc">is</span><span class="err"> </span><span class="nc">printed.</span>
<span class="nt">You</span><span class="na"> can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.</span>
<span class="na">+-------------------------+------------------------+---------+</span>
<span class="p">|</span><span class="na"> path </span><span class="p">|</span><span class="na"> image </span><span class="p">|</span><span class="na"> label </span><span class="p">|</span>
<span class="nt">+-------------------------+------------------------+---------+</span>
<span class="err">| ./train/default/1.jpg | Height: 224 Width: 224 | default |</span>
<span class="err">| ./train/default/10.jpg | Height: 224 Width: 224 | default |</span>
<span class="err">| ./train/default/100.jpg | Height: 224 Width: 224 | default |</span>
<span class="err">| ./train/default/101.jpg | Height: 224 Width: 224 | default |</span>
<span class="err">| ./train/default/102.jpg | Height: 224 Width: 224 | default |</span>
<span class="err">| ./train/default/103.jpg | Height: 224 Width: 224 | default |</span>
<span class="err">| ./train/default/104.jpg | Height: 224 Width: 224 | default |</span>
<span class="err">| ./train/default/105.jpg | Height: 224 Width: 224 | default |</span>
<span class="err">| ./train/default/106.jpg | Height: 224 Width: 224 | default |</span>
<span class="err">| ./train/default/107.jpg | Height: 224 Width: 224 | default |</span>
<span class="nt">+-------------------------+------------------------+---------+</span>
<span class="nt">[2028</span><span class="na"> rows x 3 columns]</span>
<span class="na">Note</span><span class="p">:</span><span class="err"> </span><span class="nc">Only</span><span class="err"> </span><span class="nc">the</span><span class="err"> </span><span class="nc">head</span><span class="err"> </span><span class="nc">of</span><span class="err"> </span><span class="nc">the</span><span class="err"> </span><span class="nc">SFrame</span><span class="err"> </span><span class="nc">is</span><span class="err"> </span><span class="nc">printed.</span>
<span class="nt">You</span><span class="na"> can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.</span>
</div></code></pre><h3>Making the Model</h3><pre><code><div class="highlight"><span></span><span class="kn">import</span> <span class="nn">turicreate</span> <span class="k">as</span> <span class="nn">tc</span>
<span class="c1"># Load the data</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">tc</span><span class="o">.</span><span class="n">SFrame</span><span class="p">(</span><span class="s1">'fire-smoke.sframe'</span><span class="p">)</span>
<span class="c1"># Make a train-test split</span>
<span class="n">train_data</span><span class="p">,</span> <span class="n">test_data</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">random_split</span><span class="p">(</span><span class="mf">0.8</span><span class="p">)</span>
<span class="c1"># Create the model</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">tc</span><span class="o">.</span><span class="n">image_classifier</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">train_data</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="s1">'label'</span><span class="p">)</span>
<span class="c1"># Save predictions to an SArray</span>
<span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">test_data</span><span class="p">)</span>
<span class="c1"># Evaluate the model and print the results</span>
<span class="n">metrics</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">test_data</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">metrics</span><span class="p">[</span><span class="s1">'accuracy'</span><span class="p">])</span>
<span class="c1"># Save the model for later use in Turi Create</span>
<span class="n">model</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">'fire-smoke.model'</span><span class="p">)</span>
<span class="c1"># Export for use in Core ML</span>
<span class="n">model</span><span class="o">.</span><span class="n">export_coreml</span><span class="p">(</span><span class="s1">'fire-smoke.mlmodel'</span><span class="p">)</span>
</div></code></pre><p><br></p><pre><code><div class="highlight"><span></span><span class="nt">Performing</span><span class="na"> feature extraction on resized images...</span>
<span class="na">Completed 64/1633</span>
<span class="na">Completed 128/1633</span>
<span class="na">Completed 192/1633</span>
<span class="na">Completed 256/1633</span>
<span class="na">Completed 320/1633</span>
<span class="na">Completed 384/1633</span>
<span class="na">Completed 448/1633</span>
<span class="na">Completed 512/1633</span>
<span class="na">Completed 576/1633</span>
<span class="na">Completed 640/1633</span>
<span class="na">Completed 704/1633</span>
<span class="na">Completed 768/1633</span>
<span class="na">Completed 832/1633</span>
<span class="na">Completed 896/1633</span>
<span class="na">Completed 960/1633</span>
<span class="na">Completed 1024/1633</span>
<span class="na">Completed 1088/1633</span>
<span class="na">Completed 1152/1633</span>
<span class="na">Completed 1216/1633</span>
<span class="na">Completed 1280/1633</span>
<span class="na">Completed 1344/1633</span>
<span class="na">Completed 1408/1633</span>
<span class="na">Completed 1472/1633</span>
<span class="na">Completed 1536/1633</span>
<span class="na">Completed 1600/1633</span>
<span class="na">Completed 1633/1633</span>
<span class="na">PROGRESS</span><span class="p">:</span><span class="err"> </span><span class="nc">Creating</span><span class="err"> </span><span class="nc">a</span><span class="err"> </span><span class="nc">validation</span><span class="err"> </span><span class="nc">set</span><span class="err"> </span><span class="nc">from</span><span class="err"> </span><span class="nc">5</span><span class="err"> </span><span class="nc">percent</span><span class="err"> </span><span class="nc">of</span><span class="err"> </span><span class="nc">training</span><span class="err"> </span><span class="nc">data.</span><span class="err"> </span><span class="nc">This</span><span class="err"> </span><span class="nc">may</span><span class="err"> </span><span class="nc">take</span><span class="err"> </span><span class="nc">a</span><span class="err"> </span><span class="nc">while.</span>
<span class="err">You can set ``validation_set=None`` to disable validation tracking.</span>
<span class="nt">Logistic</span><span class="na"> regression</span><span class="p">:</span>
<span class="nt">--------------------------------------------------------</span>
<span class="nt">Number</span><span class="na"> of examples </span><span class="p">:</span><span class="err"> </span><span class="nc">1551</span>
<span class="nt">Number</span><span class="na"> of classes </span><span class="p">:</span><span class="err"> </span><span class="nc">3</span>
<span class="nt">Number</span><span class="na"> of feature columns </span><span class="p">:</span><span class="err"> </span><span class="nc">1</span>
<span class="nt">Number</span><span class="na"> of unpacked features </span><span class="p">:</span><span class="err"> </span><span class="nc">2048</span>
<span class="nt">Number</span><span class="na"> of coefficients </span><span class="p">:</span><span class="err"> </span><span class="nc">4098</span>
<span class="nt">Starting</span><span class="na"> L-BFGS</span>
<span class="na">--------------------------------------------------------</span>
<span class="na">+-----------+----------+-----------+--------------+-------------------+---------------------+</span>
<span class="p">|</span><span class="na"> Iteration </span><span class="p">|</span><span class="na"> Passes </span><span class="p">|</span><span class="na"> Step size </span><span class="p">|</span><span class="na"> Elapsed Time </span><span class="p">|</span><span class="na"> Training Accuracy </span><span class="p">|</span><span class="na"> Validation Accuracy </span><span class="p">|</span>
<span class="nt">+-----------+----------+-----------+--------------+-------------------+---------------------+</span>
<span class="err">| 0 | 6 | 0.018611 | 0.891830 | 0.553836 | 0.560976 |</span>
<span class="err">| 1 | 10 | 0.390832 | 1.622383 | 0.744681 | 0.792683 |</span>
<span class="err">| 2 | 11 | 0.488541 | 1.943987 | 0.733075 | 0.804878 |</span>
<span class="err">| 3 | 14 | 2.442703 | 2.512545 | 0.727917 | 0.841463 |</span>
<span class="err">| 4 | 15 | 2.442703 | 2.826964 | 0.861380 | 0.853659 |</span>
<span class="err">| 9 | 28 | 2.340435 | 5.492035 | 0.941328 | 0.975610 |</span>
<span class="nt">+-----------+----------+-----------+--------------+-------------------+---------------------+</span>
<span class="nt">Performing</span><span class="na"> feature extraction on resized images...</span>
<span class="na">Completed 64/395</span>
<span class="na">Completed 128/395</span>
<span class="na">Completed 192/395</span>
<span class="na">Completed 256/395</span>
<span class="na">Completed 320/395</span>
<span class="na">Completed 384/395</span>
<span class="na">Completed 395/395</span>
<span class="na">0.9316455696202531</span>
</div></code></pre><p>We just got an accuracy of 94% on Training Data and 97% on Validation Data!</p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2020-01-15-Setting-up-Kaggle-to-use-with-Colab</guid><title>Setting up Kaggle to use with Google Colab</title><description>Tutorial on setting up kaggle, to use with Google Colab</description><link>https://navanchauhan.github.io/posts/2020-01-15-Setting-up-Kaggle-to-use-with-Colab</link><pubDate>Wed, 15 Jan 2020 23:36:00 +0530</pubDate><content:encoded><![CDATA[<h1>Setting up Kaggle to use with Google Colab</h1><p><em>In order to be able to access Kaggle Datasets, you will need to have an account on Kaggle (which is Free)</em></p><h2>Grabbing Our Tokens</h2><h3>Go to Kaggle</h3><img src="https://navanchauhan.github.io//assets/posts/kaggle-colab/ss1.png" alt=""Homepage""/><h3>Click on your User Profile and Click on My Account</h3><img src="https://navanchauhan.github.io//assets/posts/kaggle-colab/ss2.png" alt=""Account""/><h3>Scroll Down untill you see Create New API Token</h3><img src="https://navanchauhan.github.io//assets/posts/kaggle-colab/ss3.png"/><h3>This will download your token as a JSON file</h3><img src="https://navanchauhan.github.io//assets/posts/kaggle-colab/ss4.png"/><p>Copy the File to the root folder of your Google Drive</p><h2>Setting up Colab</h2><h3>Mounting Google Drive</h3><pre><code><div class="highlight"><span></span><span class="kn">import</span> <span class="nn">os</span>
<span class="kn">from</span> <span class="nn">google.colab</span> <span class="kn">import</span> <span class="n">drive</span>
<span class="n">drive</span><span class="o">.</span><span class="n">mount</span><span class="p">(</span><span class="s1">'/content/drive'</span><span class="p">)</span>
</div></code></pre><p>After this click on the URL in the output section, login and then paste the Auth Code</p><h3>Configuring Kaggle</h3><pre><code><div class="highlight"><span></span><span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">'KAGGLE_CONFIG_DIR'</span><span class="p">]</span> <span class="o">=</span> <span class="s2">"/content/drive/My Drive/"</span>
</div></code></pre><p>Voila! You can now download kaggel datasets</p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2020-01-14-Converting-between-PIL-NumPy</guid><title>Converting between image and NumPy array</title><description>Short code snippet for converting between PIL image and NumPy arrays.</description><link>https://navanchauhan.github.io/posts/2020-01-14-Converting-between-PIL-NumPy</link><pubDate>Tue, 14 Jan 2020 00:10:00 +0530</pubDate><content:encoded><![CDATA[<h1>Converting between image and NumPy array</h1><pre><code><div class="highlight"><span></span><span class="kn">import</span> <span class="nn">numpy</span>
<span class="kn">import</span> <span class="nn">PIL</span>
<span class="c1"># Convert PIL Image to NumPy array</span>
<span class="n">img</span> <span class="o">=</span> <span class="n">PIL</span><span class="o">.</span><span class="n">Image</span><span class="o">.</span><span class="n">open</span><span class="p">(</span><span class="s2">"foo.jpg"</span><span class="p">)</span>
<span class="n">arr</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">img</span><span class="p">)</span>
<span class="c1"># Convert array to Image</span>
<span class="n">img</span> <span class="o">=</span> <span class="n">PIL</span><span class="o">.</span><span class="n">Image</span><span class="o">.</span><span class="n">fromarray</span><span class="p">(</span><span class="n">arr</span><span class="p">)</span>
</div></code></pre><h2>Saving an Image</h2><pre><code><div class="highlight"><span></span><span class="k">try</span><span class="p">:</span>
<span class="n">img</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">destination</span><span class="p">,</span> <span class="s2">"JPEG"</span><span class="p">,</span> <span class="n">quality</span><span class="o">=</span><span class="mi">80</span><span class="p">,</span> <span class="n">optimize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">progressive</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">IOError</span><span class="p">:</span>
<span class="n">PIL</span><span class="o">.</span><span class="n">ImageFile</span><span class="o">.</span><span class="n">MAXBLOCK</span> <span class="o">=</span> <span class="n">img</span><span class="o">.</span><span class="n">size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">img</span><span class="o">.</span><span class="n">size</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="n">img</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">destination</span><span class="p">,</span> <span class="s2">"JPEG"</span><span class="p">,</span> <span class="n">quality</span><span class="o">=</span><span class="mi">80</span><span class="p">,</span> <span class="n">optimize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">progressive</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</div></code></pre>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2019-12-22-Fake-News-Detector</guid><title>Building a Fake News Detector with Turicreate</title><description>In this tutorial we will build a fake news detecting app from scratch, using Turicreate for the machine learning model and SwiftUI for building the app</description><link>https://navanchauhan.github.io/posts/2019-12-22-Fake-News-Detector</link><pubDate>Sun, 22 Dec 2019 11:10:00 +0530</pubDate><content:encoded><![CDATA[<h1>Building a Fake News Detector with Turicreate</h1><p><strong>In this tutorial we will build a fake news detecting app from scratch, using Turicreate for the machine learning model and SwiftUI for building the app</strong></p><p>Note: These commands are written as if you are running a jupyter notebook.</p><h2>Building the Machine Learning Model</h2><h3>Data Gathering</h3><p>To build a classifier, you need a lot of data. George McIntire (GH: @joolsa) has created a wonderful dataset containing the headline, body and wheter it is fake or real. Whenever you are looking for a dataset, always try searching on Kaggle and GitHub before you start building your own</p><h3>Dependencies</h3><p>I used a Google Colab instance for training my model. If you also plan on using Google Colab then I reccomend choosing a GPU Instance (It is Free) This allows you to train the model on the GPU. Turicreat is built on top of Apache's MXNet Framework, for us to use GPU we need to install a CUDA compatible MXNet package.</p><pre><code><div class="highlight"><span></span><span class="nt">!pip</span><span class="na"> install turicreate</span>
<span class="na">!pip uninstall -y mxnet</span>
<span class="na">!pip install mxnet-cu100==1.4.0.post0</span>
</div></code></pre><p>If you do not wish to train on GPU or are running it on your computer, you can ignore the last two lines</p><h3>Downloading the Dataset</h3><pre><code><div class="highlight"><span></span><span class="nt">!wget</span><span class="na"> -q "https</span><span class="p">:</span><span class="nc">//github.com/joolsa/fake_real_news_dataset/raw/master/fake_or_real_news.csv.zip"</span>
<span class="nt">!unzip</span><span class="na"> fake_or_real_news.csv.zip</span>
</div></code></pre><h3>Model Creation</h3><pre><code><div class="highlight"><span></span><span class="kn">import</span> <span class="nn">turicreate</span> <span class="k">as</span> <span class="nn">tc</span>
<span class="n">tc</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">set_num_gpus</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="c1"># If you do not wish to use GPUs, set it to 0</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">dataSFrame</span> <span class="o">=</span> <span class="n">tc</span><span class="o">.</span><span class="n">SFrame</span><span class="p">(</span><span class="s1">'fake_or_real_news.csv'</span><span class="p">)</span>
</div></code></pre><p>The dataset contains a column named "X1", which is of no use to us. Therefore, we simply drop it</p><pre><code><div class="highlight"><span></span><span class="n">dataSFrame</span><span class="o">.</span><span class="n">remove_column</span><span class="p">(</span><span class="s1">'X1'</span><span class="p">)</span>
</div></code></pre><h4>Splitting Dataset</h4><pre><code><div class="highlight"><span></span><span class="n">train</span><span class="p">,</span> <span class="n">test</span> <span class="o">=</span> <span class="n">dataSFrame</span><span class="o">.</span><span class="n">random_split</span><span class="p">(</span><span class="o">.</span><span class="mi">9</span><span class="p">)</span>
</div></code></pre><h4>Training</h4><pre><code><div class="highlight"><span></span><span class="n">model</span> <span class="o">=</span> <span class="n">tc</span><span class="o">.</span><span class="n">text_classifier</span><span class="o">.</span><span class="n">create</span><span class="p">(</span>
<span class="n">dataset</span><span class="o">=</span><span class="n">train</span><span class="p">,</span>
<span class="n">target</span><span class="o">=</span><span class="s1">'label'</span><span class="p">,</span>
<span class="n">features</span><span class="o">=</span><span class="p">[</span><span class="s1">'title'</span><span class="p">,</span><span class="s1">'text'</span><span class="p">]</span>
<span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="o">+-----------+----------+-----------+--------------+-------------------+---------------------+</span>
<span class="o">|</span> <span class="n">Iteration</span> <span class="o">|</span> <span class="n">Passes</span> <span class="o">|</span> <span class="n">Step</span> <span class="n">size</span> <span class="o">|</span> <span class="n">Elapsed</span> <span class="n">Time</span> <span class="o">|</span> <span class="n">Training</span> <span class="n">Accuracy</span> <span class="o">|</span> <span class="n">Validation</span> <span class="n">Accuracy</span> <span class="o">|</span>
<span class="o">+-----------+----------+-----------+--------------+-------------------+---------------------+</span>
<span class="o">|</span> <span class="mi">0</span> <span class="o">|</span> <span class="mi">2</span> <span class="o">|</span> <span class="mf">1.000000</span> <span class="o">|</span> <span class="mf">1.156349</span> <span class="o">|</span> <span class="mf">0.889680</span> <span class="o">|</span> <span class="mf">0.790036</span> <span class="o">|</span>
<span class="o">|</span> <span class="mi">1</span> <span class="o">|</span> <span class="mi">4</span> <span class="o">|</span> <span class="mf">1.000000</span> <span class="o">|</span> <span class="mf">1.359196</span> <span class="o">|</span> <span class="mf">0.985952</span> <span class="o">|</span> <span class="mf">0.918149</span> <span class="o">|</span>
<span class="o">|</span> <span class="mi">2</span> <span class="o">|</span> <span class="mi">6</span> <span class="o">|</span> <span class="mf">0.820091</span> <span class="o">|</span> <span class="mf">1.557205</span> <span class="o">|</span> <span class="mf">0.990260</span> <span class="o">|</span> <span class="mf">0.914591</span> <span class="o">|</span>
<span class="o">|</span> <span class="mi">3</span> <span class="o">|</span> <span class="mi">7</span> <span class="o">|</span> <span class="mf">1.000000</span> <span class="o">|</span> <span class="mf">1.684872</span> <span class="o">|</span> <span class="mf">0.998689</span> <span class="o">|</span> <span class="mf">0.925267</span> <span class="o">|</span>
<span class="o">|</span> <span class="mi">4</span> <span class="o">|</span> <span class="mi">8</span> <span class="o">|</span> <span class="mf">1.000000</span> <span class="o">|</span> <span class="mf">1.814194</span> <span class="o">|</span> <span class="mf">0.999063</span> <span class="o">|</span> <span class="mf">0.925267</span> <span class="o">|</span>
<span class="o">|</span> <span class="mi">9</span> <span class="o">|</span> <span class="mi">14</span> <span class="o">|</span> <span class="mf">1.000000</span> <span class="o">|</span> <span class="mf">2.507072</span> <span class="o">|</span> <span class="mf">1.000000</span> <span class="o">|</span> <span class="mf">0.911032</span> <span class="o">|</span>
<span class="o">+-----------+----------+-----------+--------------+-------------------+---------------------+</span>
</div></code></pre><h3>Testing the Model</h3><pre><code><div class="highlight"><span></span><span class="n">est_predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">test</span><span class="p">)</span>
<span class="n">accuracy</span> <span class="o">=</span> <span class="n">tc</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="n">accuracy</span><span class="p">(</span><span class="n">test</span><span class="p">[</span><span class="s1">'label'</span><span class="p">],</span> <span class="n">test_predictions</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'Topic classifier model has a testing accuracy of </span><span class="si">{</span><span class="n">accuracy</span><span class="o">*</span><span class="mi">100</span><span class="si">}</span><span class="s1">% '</span><span class="p">,</span> <span class="n">flush</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">Topic</span> <span class="n">classifier</span> <span class="n">model</span> <span class="n">has</span> <span class="n">a</span> <span class="n">testing</span> <span class="n">accuracy</span> <span class="n">of</span> <span class="mf">92.3076923076923</span><span class="o">%</span>
</div></code></pre><p>We have just created our own Fake News Detection Model which has an accuracy of 92%!</p><pre><code><div class="highlight"><span></span><span class="n">example_text</span> <span class="o">=</span> <span class="p">{</span><span class="s2">"title"</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Middling βRise Of Skywalkerβ Review Leaves Fan On Fence About Whether To Threaten To Kill Critic"</span><span class="p">],</span> <span class="s2">"text"</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Expressing ambivalence toward the relatively balanced appraisal of the film, Star Wars fan Miles Ariely admitted Thursday that an online publicationβs middling review of The Rise Of Skywalker had left him on the fence about whether he would still threaten to kill the critic who wrote it. βIβm really of two minds about this, because on the one hand, he said the new movie fails to live up to the original trilogy, which makes me at least want to throw a brick through his window with a note telling him to watch his back,β said Ariely, confirming he had already drafted an eight-page-long death threat to Stan Corimer of the website Screen-On Time, but had not yet decided whether to post it to the reviewerβs Facebook page. βOn the other hand, though, he commended J.J. Abramsβ skillful pacing and faithfulness to George Lucasβ vision, which makes me wonder if I should just call the whole thing off. Now, I really donβt feel like camping outside his house for hours. Maybe I could go with a response thatβs somewhere in between, like, threatening to kill his dog but not everyone in his whole family? I donβt know. This is a tough one.β At press time, sources reported that Ariely had resolved to wear his Ewok costume while he murdered the critic in his sleep."</span><span class="p">]}</span>
<span class="n">example_prediction</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">classify</span><span class="p">(</span><span class="n">tc</span><span class="o">.</span><span class="n">SFrame</span><span class="p">(</span><span class="n">example_text</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="n">example_prediction</span><span class="p">,</span> <span class="n">flush</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="o">+-------+--------------------+</span>
<span class="o">|</span> <span class="k">class</span> <span class="err">| </span><span class="nc">probability</span> <span class="o">|</span>
<span class="o">+-------+--------------------+</span>
<span class="o">|</span> <span class="n">FAKE</span> <span class="o">|</span> <span class="mf">0.9245648658345308</span> <span class="o">|</span>
<span class="o">+-------+--------------------+</span>
<span class="p">[</span><span class="mi">1</span> <span class="n">rows</span> <span class="n">x</span> <span class="mi">2</span> <span class="n">columns</span><span class="p">]</span>
</div></code></pre><h3>Exporting the Model</h3><pre><code><div class="highlight"><span></span><span class="n">model_name</span> <span class="o">=</span> <span class="s1">'FakeNews'</span>
<span class="n">coreml_model_name</span> <span class="o">=</span> <span class="n">model_name</span> <span class="o">+</span> <span class="s1">'.mlmodel'</span>
<span class="n">exportedModel</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">export_coreml</span><span class="p">(</span><span class="n">coreml_model_name</span><span class="p">)</span>
</div></code></pre><p><strong>Note: To download files from Google Volab, simply click on the files section in the sidebar, right click on filename and then click on downlaod</strong></p><p><a href="https://colab.research.google.com/drive/1onMXGkhA__X2aOFdsoVL-6HQBsWQhOP4">Link to Colab Notebook</a></p><h2>Building the App using SwiftUI</h2><h3>Initial Setup</h3><p>First we create a single view app (make sure you check the use SwiftUI button)</p><p>Then we copy our .mlmodel file to our project (Just drag and drop the file in the XCode Files Sidebar)</p><p>Our ML Model does not take a string directly as an input, rather it takes bag of words as an input. DescriptionThe bag-of-words model is a simplifying representation used in NLP, in this text is represented as a bag of words, without any regatd of grammar or order, but noting multiplicity</p><p>We define our bag of words function</p><pre><code><div class="highlight"><span></span><span class="kd">func</span> <span class="nf">bow</span><span class="p">(</span><span class="n">text</span><span class="p">:</span> <span class="nb">String</span><span class="p">)</span> <span class="p">-></span> <span class="p">[</span><span class="nb">String</span><span class="p">:</span> <span class="nb">Double</span><span class="p">]</span> <span class="p">{</span>
<span class="kd">var</span> <span class="nv">bagOfWords</span> <span class="p">=</span> <span class="p">[</span><span class="nb">String</span><span class="p">:</span> <span class="nb">Double</span><span class="p">]()</span>
<span class="kd">let</span> <span class="nv">tagger</span> <span class="p">=</span> <span class="bp">NSLinguisticTagger</span><span class="p">(</span><span class="n">tagSchemes</span><span class="p">:</span> <span class="p">[.</span><span class="n">tokenType</span><span class="p">],</span> <span class="n">options</span><span class="p">:</span> <span class="mi">0</span><span class="p">)</span>
<span class="kd">let</span> <span class="nv">range</span> <span class="p">=</span> <span class="n">NSRange</span><span class="p">(</span><span class="n">location</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">length</span><span class="p">:</span> <span class="n">text</span><span class="p">.</span><span class="n">utf16</span><span class="p">.</span><span class="bp">count</span><span class="p">)</span>
<span class="kd">let</span> <span class="nv">options</span><span class="p">:</span> <span class="bp">NSLinguisticTagger</span><span class="p">.</span><span class="n">Options</span> <span class="p">=</span> <span class="p">[.</span><span class="n">omitPunctuation</span><span class="p">,</span> <span class="p">.</span><span class="n">omitWhitespace</span><span class="p">]</span>
<span class="n">tagger</span><span class="p">.</span><span class="n">string</span> <span class="p">=</span> <span class="n">text</span>
<span class="n">tagger</span><span class="p">.</span><span class="n">enumerateTags</span><span class="p">(</span><span class="k">in</span><span class="p">:</span> <span class="n">range</span><span class="p">,</span> <span class="n">unit</span><span class="p">:</span> <span class="p">.</span><span class="n">word</span><span class="p">,</span> <span class="n">scheme</span><span class="p">:</span> <span class="p">.</span><span class="n">tokenType</span><span class="p">,</span> <span class="n">options</span><span class="p">:</span> <span class="n">options</span><span class="p">)</span> <span class="p">{</span> <span class="kc">_</span><span class="p">,</span> <span class="n">tokenRange</span><span class="p">,</span> <span class="kc">_</span> <span class="k">in</span>
<span class="kd">let</span> <span class="nv">word</span> <span class="p">=</span> <span class="p">(</span><span class="n">text</span> <span class="k">as</span> <span class="bp">NSString</span><span class="p">).</span><span class="n">substring</span><span class="p">(</span><span class="n">with</span><span class="p">:</span> <span class="n">tokenRange</span><span class="p">)</span>
<span class="k">if</span> <span class="n">bagOfWords</span><span class="p">[</span><span class="n">word</span><span class="p">]</span> <span class="o">!=</span> <span class="kc">nil</span> <span class="p">{</span>
<span class="n">bagOfWords</span><span class="p">[</span><span class="n">word</span><span class="p">]</span><span class="o">!</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="p">}</span> <span class="k">else</span> <span class="p">{</span>
<span class="n">bagOfWords</span><span class="p">[</span><span class="n">word</span><span class="p">]</span> <span class="p">=</span> <span class="mi">1</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="k">return</span> <span class="n">bagOfWords</span>
<span class="p">}</span>
</div></code></pre><p>We also declare our variables</p><pre><code><div class="highlight"><span></span><span class="p">@</span><span class="n">State</span> <span class="kd">private</span> <span class="kd">var</span> <span class="nv">title</span><span class="p">:</span> <span class="nb">String</span> <span class="p">=</span> <span class="s">""</span>
<span class="p">@</span><span class="n">State</span> <span class="kd">private</span> <span class="kd">var</span> <span class="nv">headline</span><span class="p">:</span> <span class="nb">String</span> <span class="p">=</span> <span class="s">""</span>
<span class="p">@</span><span class="n">State</span> <span class="kd">private</span> <span class="kd">var</span> <span class="nv">alertTitle</span> <span class="p">=</span> <span class="s">""</span>
<span class="p">@</span><span class="n">State</span> <span class="kd">private</span> <span class="kd">var</span> <span class="nv">alertText</span> <span class="p">=</span> <span class="s">""</span>
<span class="p">@</span><span class="n">State</span> <span class="kd">private</span> <span class="kd">var</span> <span class="nv">showingAlert</span> <span class="p">=</span> <span class="kc">false</span>
</div></code></pre><p>Finally, we implement a simple function which reads the two text fields, creates their bag of words representation and displays an alert with the appropriate result</p><p><strong>Complete Code</strong></p><pre><code><div class="highlight"><span></span><span class="kd">import</span> <span class="nc">SwiftUI</span>
<span class="kd">struct</span> <span class="nc">ContentView</span><span class="p">:</span> <span class="n">View</span> <span class="p">{</span>
<span class="p">@</span><span class="n">State</span> <span class="kd">private</span> <span class="kd">var</span> <span class="nv">title</span><span class="p">:</span> <span class="nb">String</span> <span class="p">=</span> <span class="s">""</span>
<span class="p">@</span><span class="n">State</span> <span class="kd">private</span> <span class="kd">var</span> <span class="nv">headline</span><span class="p">:</span> <span class="nb">String</span> <span class="p">=</span> <span class="s">""</span>
<span class="p">@</span><span class="n">State</span> <span class="kd">private</span> <span class="kd">var</span> <span class="nv">alertTitle</span> <span class="p">=</span> <span class="s">""</span>
<span class="p">@</span><span class="n">State</span> <span class="kd">private</span> <span class="kd">var</span> <span class="nv">alertText</span> <span class="p">=</span> <span class="s">""</span>
<span class="p">@</span><span class="n">State</span> <span class="kd">private</span> <span class="kd">var</span> <span class="nv">showingAlert</span> <span class="p">=</span> <span class="kc">false</span>
<span class="kd">var</span> <span class="nv">body</span><span class="p">:</span> <span class="n">some</span> <span class="n">View</span> <span class="p">{</span>
<span class="n">NavigationView</span> <span class="p">{</span>
<span class="n">VStack</span><span class="p">(</span><span class="n">alignment</span><span class="p">:</span> <span class="p">.</span><span class="n">leading</span><span class="p">)</span> <span class="p">{</span>
<span class="n">Text</span><span class="p">(</span><span class="s">"Headline"</span><span class="p">).</span><span class="n">font</span><span class="p">(.</span><span class="n">headline</span><span class="p">)</span>
<span class="n">TextField</span><span class="p">(</span><span class="s">"Please Enter Headline"</span><span class="p">,</span> <span class="n">text</span><span class="p">:</span> <span class="err">$</span><span class="n">title</span><span class="p">)</span>
<span class="p">.</span><span class="n">lineLimit</span><span class="p">(</span><span class="kc">nil</span><span class="p">)</span>
<span class="n">Text</span><span class="p">(</span><span class="s">"Body"</span><span class="p">).</span><span class="n">font</span><span class="p">(.</span><span class="n">headline</span><span class="p">)</span>
<span class="n">TextField</span><span class="p">(</span><span class="s">"Please Enter the content"</span><span class="p">,</span> <span class="n">text</span><span class="p">:</span> <span class="err">$</span><span class="n">headline</span><span class="p">)</span>
<span class="p">.</span><span class="n">lineLimit</span><span class="p">(</span><span class="kc">nil</span><span class="p">)</span>
<span class="p">}</span>
<span class="p">.</span><span class="n">navigationBarTitle</span><span class="p">(</span><span class="s">"Fake News Checker"</span><span class="p">)</span>
<span class="p">.</span><span class="n">navigationBarItems</span><span class="p">(</span><span class="n">trailing</span><span class="p">:</span>
<span class="n">Button</span><span class="p">(</span><span class="n">action</span><span class="p">:</span> <span class="n">classifyFakeNews</span><span class="p">)</span> <span class="p">{</span>
<span class="n">Text</span><span class="p">(</span><span class="s">"Check"</span><span class="p">)</span>
<span class="p">})</span>
<span class="p">.</span><span class="n">padding</span><span class="p">()</span>
<span class="p">.</span><span class="n">alert</span><span class="p">(</span><span class="n">isPresented</span><span class="p">:</span> <span class="err">$</span><span class="n">showingAlert</span><span class="p">){</span>
<span class="n">Alert</span><span class="p">(</span><span class="n">title</span><span class="p">:</span> <span class="n">Text</span><span class="p">(</span><span class="n">alertTitle</span><span class="p">),</span> <span class="n">message</span><span class="p">:</span> <span class="n">Text</span><span class="p">(</span><span class="n">alertText</span><span class="p">),</span> <span class="n">dismissButton</span><span class="p">:</span> <span class="p">.</span><span class="k">default</span><span class="p">(</span><span class="n">Text</span><span class="p">(</span><span class="s">"OK"</span><span class="p">)))</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="kd">func</span> <span class="nf">classifyFakeNews</span><span class="p">(){</span>
<span class="kd">let</span> <span class="nv">model</span> <span class="p">=</span> <span class="n">FakeNews</span><span class="p">()</span>
<span class="kd">let</span> <span class="nv">myTitle</span> <span class="p">=</span> <span class="n">bow</span><span class="p">(</span><span class="n">text</span><span class="p">:</span> <span class="n">title</span><span class="p">)</span>
<span class="kd">let</span> <span class="nv">myText</span> <span class="p">=</span> <span class="n">bow</span><span class="p">(</span><span class="n">text</span><span class="p">:</span> <span class="n">headline</span><span class="p">)</span>
<span class="k">do</span> <span class="p">{</span>
<span class="kd">let</span> <span class="nv">prediction</span> <span class="p">=</span> <span class="k">try</span> <span class="n">model</span><span class="p">.</span><span class="n">prediction</span><span class="p">(</span><span class="n">title</span><span class="p">:</span> <span class="n">myTitle</span><span class="p">,</span> <span class="n">text</span><span class="p">:</span> <span class="n">myText</span><span class="p">)</span>
<span class="n">alertTitle</span> <span class="p">=</span> <span class="n">prediction</span><span class="p">.</span><span class="n">label</span>
<span class="n">alertText</span> <span class="p">=</span> <span class="s">"It is likely that this piece of news is </span><span class="si">\(</span><span class="n">prediction</span><span class="p">.</span><span class="n">label</span><span class="p">.</span><span class="n">lowercased</span><span class="si">())</span><span class="s">."</span>
<span class="bp">print</span><span class="p">(</span><span class="n">alertText</span><span class="p">)</span>
<span class="p">}</span> <span class="k">catch</span> <span class="p">{</span>
<span class="n">alertTitle</span> <span class="p">=</span> <span class="s">"Error"</span>
<span class="n">alertText</span> <span class="p">=</span> <span class="s">"Sorry, could not classify if the input news was fake or not."</span>
<span class="p">}</span>
<span class="n">showingAlert</span> <span class="p">=</span> <span class="kc">true</span>
<span class="p">}</span>
<span class="kd">func</span> <span class="nf">bow</span><span class="p">(</span><span class="n">text</span><span class="p">:</span> <span class="nb">String</span><span class="p">)</span> <span class="p">-></span> <span class="p">[</span><span class="nb">String</span><span class="p">:</span> <span class="nb">Double</span><span class="p">]</span> <span class="p">{</span>
<span class="kd">var</span> <span class="nv">bagOfWords</span> <span class="p">=</span> <span class="p">[</span><span class="nb">String</span><span class="p">:</span> <span class="nb">Double</span><span class="p">]()</span>
<span class="kd">let</span> <span class="nv">tagger</span> <span class="p">=</span> <span class="bp">NSLinguisticTagger</span><span class="p">(</span><span class="n">tagSchemes</span><span class="p">:</span> <span class="p">[.</span><span class="n">tokenType</span><span class="p">],</span> <span class="n">options</span><span class="p">:</span> <span class="mi">0</span><span class="p">)</span>
<span class="kd">let</span> <span class="nv">range</span> <span class="p">=</span> <span class="n">NSRange</span><span class="p">(</span><span class="n">location</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">length</span><span class="p">:</span> <span class="n">text</span><span class="p">.</span><span class="n">utf16</span><span class="p">.</span><span class="bp">count</span><span class="p">)</span>
<span class="kd">let</span> <span class="nv">options</span><span class="p">:</span> <span class="bp">NSLinguisticTagger</span><span class="p">.</span><span class="n">Options</span> <span class="p">=</span> <span class="p">[.</span><span class="n">omitPunctuation</span><span class="p">,</span> <span class="p">.</span><span class="n">omitWhitespace</span><span class="p">]</span>
<span class="n">tagger</span><span class="p">.</span><span class="n">string</span> <span class="p">=</span> <span class="n">text</span>
<span class="n">tagger</span><span class="p">.</span><span class="n">enumerateTags</span><span class="p">(</span><span class="k">in</span><span class="p">:</span> <span class="n">range</span><span class="p">,</span> <span class="n">unit</span><span class="p">:</span> <span class="p">.</span><span class="n">word</span><span class="p">,</span> <span class="n">scheme</span><span class="p">:</span> <span class="p">.</span><span class="n">tokenType</span><span class="p">,</span> <span class="n">options</span><span class="p">:</span> <span class="n">options</span><span class="p">)</span> <span class="p">{</span> <span class="kc">_</span><span class="p">,</span> <span class="n">tokenRange</span><span class="p">,</span> <span class="kc">_</span> <span class="k">in</span>
<span class="kd">let</span> <span class="nv">word</span> <span class="p">=</span> <span class="p">(</span><span class="n">text</span> <span class="k">as</span> <span class="bp">NSString</span><span class="p">).</span><span class="n">substring</span><span class="p">(</span><span class="n">with</span><span class="p">:</span> <span class="n">tokenRange</span><span class="p">)</span>
<span class="k">if</span> <span class="n">bagOfWords</span><span class="p">[</span><span class="n">word</span><span class="p">]</span> <span class="o">!=</span> <span class="kc">nil</span> <span class="p">{</span>
<span class="n">bagOfWords</span><span class="p">[</span><span class="n">word</span><span class="p">]</span><span class="o">!</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="p">}</span> <span class="k">else</span> <span class="p">{</span>
<span class="n">bagOfWords</span><span class="p">[</span><span class="n">word</span><span class="p">]</span> <span class="p">=</span> <span class="mi">1</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="k">return</span> <span class="n">bagOfWords</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="kd">struct</span> <span class="nc">ContentView_Previews</span><span class="p">:</span> <span class="n">PreviewProvider</span> <span class="p">{</span>
<span class="kd">static</span> <span class="kd">var</span> <span class="nv">previews</span><span class="p">:</span> <span class="n">some</span> <span class="n">View</span> <span class="p">{</span>
<span class="n">ContentView</span><span class="p">()</span>
<span class="p">}</span>
<span class="p">}</span>
</div></code></pre>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2019-12-16-TensorFlow-Polynomial-Regression</guid><title>Polynomial Regression Using TensorFlow</title><description>Polynomial regression using TensorFlow</description><link>https://navanchauhan.github.io/posts/2019-12-16-TensorFlow-Polynomial-Regression</link><pubDate>Mon, 16 Dec 2019 14:16:00 +0530</pubDate><content:encoded><![CDATA[<h1>Polynomial Regression Using TensorFlow</h1><p><strong>In this tutorial you will learn about polynomial regression and how you can implement it in Tensorflow.</strong></p><p>In this, we will be performing polynomial regression using 5 types of equations -</p><ul><li>Linear</li><li>Quadratic</li><li>Cubic</li><li>Quartic</li><li>Quintic</li></ul><h2>Regression</h2><h3>What is Regression?</h3><p>Regression is a statistical measurement that is used to try to determine the relationship between a dependent variable (often denoted by Y), and series of varying variables (called independent variables, often denoted by X ).</p><h3>What is Polynomial Regression</h3><p>This is a form of Regression Analysis where the relationship between Y and X is denoted as the nth degree/power of X. Polynomial regression even fits a non-linear relationship (e.g when the points don't form a straight line).</p><h2>Imports</h2><pre><code><div class="highlight"><span></span><span class="kn">import</span> <span class="nn">tensorflow.compat.v1</span> <span class="k">as</span> <span class="nn">tf</span>
<span class="n">tf</span><span class="o">.</span><span class="n">disable_v2_behavior</span><span class="p">()</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
</div></code></pre><h2>Dataset</h2><h3>Creating Random Data</h3><p>Even though in this tutorial we will use a Position Vs Salary datasset, it is important to know how to create synthetic data</p><p>To create 50 values spaced evenly between 0 and 50, we use NumPy's linspace funtion</p><p><code>linspace(lower_limit, upper_limit, no_of_observations)</code></p><pre><code><div class="highlight"><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span>
</div></code></pre><p>We use the following function to add noise to the data, so that our values</p><pre><code><div class="highlight"><span></span><span class="n">x</span> <span class="o">+=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span>
<span class="n">y</span> <span class="o">+=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span>
</div></code></pre><h3>Position vs Salary Dataset</h3><p>We will be using https://drive.google.com/file/d/1tNL4jxZEfpaP4oflfSn6pIHJX7Pachm9/view (Salary vs Position Dataset)</p><pre><code><div class="highlight"><span></span><span class="nt">!wget</span><span class="na"> --no-check-certificate 'https</span><span class="p">:</span><span class="nc">//docs.google.com/uc?export</span><span class="o">=</span><span class="l">download&id=1tNL4jxZEfpaP4oflfSn6pIHJX7Pachm9' -O data.csv</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">"data.csv"</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">df</span> <span class="c1"># this gives us a preview of the dataset we are working with</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="o">|</span> <span class="n">Position</span> <span class="o">|</span> <span class="n">Level</span> <span class="o">|</span> <span class="n">Salary</span> <span class="o">|</span>
<span class="o">|-------------------|-------|---------|</span>
<span class="o">|</span> <span class="n">Business</span> <span class="n">Analyst</span> <span class="o">|</span> <span class="mi">1</span> <span class="o">|</span> <span class="mi">45000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Junior</span> <span class="n">Consultant</span> <span class="o">|</span> <span class="mi">2</span> <span class="o">|</span> <span class="mi">50000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Senior</span> <span class="n">Consultant</span> <span class="o">|</span> <span class="mi">3</span> <span class="o">|</span> <span class="mi">60000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Manager</span> <span class="o">|</span> <span class="mi">4</span> <span class="o">|</span> <span class="mi">80000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Country</span> <span class="n">Manager</span> <span class="o">|</span> <span class="mi">5</span> <span class="o">|</span> <span class="mi">110000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Region</span> <span class="n">Manager</span> <span class="o">|</span> <span class="mi">6</span> <span class="o">|</span> <span class="mi">150000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Partner</span> <span class="o">|</span> <span class="mi">7</span> <span class="o">|</span> <span class="mi">200000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Senior</span> <span class="n">Partner</span> <span class="o">|</span> <span class="mi">8</span> <span class="o">|</span> <span class="mi">300000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">C</span><span class="o">-</span><span class="n">level</span> <span class="o">|</span> <span class="mi">9</span> <span class="o">|</span> <span class="mi">500000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">CEO</span> <span class="o">|</span> <span class="mi">10</span> <span class="o">|</span> <span class="mi">1000000</span> <span class="o">|</span>
</div></code></pre><p>We convert the salary column as the ordinate (y-cordinate) and level column as the abscissa</p><pre><code><div class="highlight"><span></span><span class="n">abscissa</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">"Level"</span><span class="p">]</span><span class="o">.</span><span class="n">to_list</span><span class="p">()</span> <span class="c1"># abscissa = [1,2,3,4,5,6,7,8,9,10]</span>
<span class="n">ordinate</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">"Salary"</span><span class="p">]</span><span class="o">.</span><span class="n">to_list</span><span class="p">()</span> <span class="c1"># ordinate = [45000,50000,60000,80000,110000,150000,200000,300000,500000,1000000]</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">abscissa</span><span class="p">)</span> <span class="c1"># no of observations</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Salary'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Position'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Salary vs Position"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="https://navanchauhan.github.io//assets/gciTales/03-regression/1.png"/><h2>Defining Stuff</h2><pre><code><div class="highlight"><span></span><span class="n">X</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">placeholder</span><span class="p">(</span><span class="s2">"float"</span><span class="p">)</span>
<span class="n">Y</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">placeholder</span><span class="p">(</span><span class="s2">"float"</span><span class="p">)</span>
</div></code></pre><h3>Defining Variables</h3><p>We first define all the coefficients and constant as tensorflow variables haveing a random intitial value</p><pre><code><div class="highlight"><span></span><span class="n">a</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"a"</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"b"</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"c"</span><span class="p">)</span>
<span class="n">d</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"d"</span><span class="p">)</span>
<span class="n">e</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"e"</span><span class="p">)</span>
<span class="n">f</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"f"</span><span class="p">)</span>
</div></code></pre><h3>Model Configuration</h3><pre><code><div class="highlight"><span></span><span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">0.2</span>
<span class="n">no_of_epochs</span> <span class="o">=</span> <span class="mi">25000</span>
</div></code></pre><h3>Equations</h3><pre><code><div class="highlight"><span></span><span class="n">deg1</span> <span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="n">X</span> <span class="o">+</span> <span class="n">b</span>
<span class="n">deg2</span> <span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">b</span><span class="o">*</span><span class="n">X</span> <span class="o">+</span> <span class="n">c</span>
<span class="n">deg3</span> <span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">b</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">c</span><span class="o">*</span><span class="n">X</span> <span class="o">+</span> <span class="n">d</span>
<span class="n">deg4</span> <span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span> <span class="o">+</span> <span class="n">b</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">c</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">d</span><span class="o">*</span><span class="n">X</span> <span class="o">+</span> <span class="n">e</span>
<span class="n">deg5</span> <span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">5</span><span class="p">)</span> <span class="o">+</span> <span class="n">b</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span> <span class="o">+</span> <span class="n">c</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">d</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">e</span><span class="o">*</span><span class="n">X</span> <span class="o">+</span> <span class="n">f</span>
</div></code></pre><h3>Cost Function</h3><p>We use the Mean Squared Error Function</p><pre><code><div class="highlight"><span></span><span class="n">mse1</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">deg1</span><span class="o">-</span><span class="n">Y</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">n</span><span class="p">)</span>
<span class="n">mse2</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">deg2</span><span class="o">-</span><span class="n">Y</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">n</span><span class="p">)</span>
<span class="n">mse3</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">deg3</span><span class="o">-</span><span class="n">Y</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">n</span><span class="p">)</span>
<span class="n">mse4</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">deg4</span><span class="o">-</span><span class="n">Y</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">n</span><span class="p">)</span>
<span class="n">mse5</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">deg5</span><span class="o">-</span><span class="n">Y</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">n</span><span class="p">)</span>
</div></code></pre><h3>Optimizer</h3><p>We use the AdamOptimizer for the polynomial functions and GradientDescentOptimizer for the linear function</p><pre><code><div class="highlight"><span></span><span class="n">optimizer1</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">GradientDescentOptimizer</span><span class="p">(</span><span class="n">learning_rate</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">mse1</span><span class="p">)</span>
<span class="n">optimizer2</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">AdamOptimizer</span><span class="p">(</span><span class="n">learning_rate</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">mse2</span><span class="p">)</span>
<span class="n">optimizer3</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">AdamOptimizer</span><span class="p">(</span><span class="n">learning_rate</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">mse3</span><span class="p">)</span>
<span class="n">optimizer4</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">AdamOptimizer</span><span class="p">(</span><span class="n">learning_rate</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">mse4</span><span class="p">)</span>
<span class="n">optimizer5</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">AdamOptimizer</span><span class="p">(</span><span class="n">learning_rate</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">mse5</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">init</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">global_variables_initializer</span><span class="p">()</span>
</div></code></pre><h2>Model Predictions</h2><p>For each type of equation first we make the model predict the values of the coefficient(s) and constant, once we get these values we use it to predict the Y values using the X values. We then plot it to compare the actual data and predicted line.</p><h3>Linear Equation</h3><pre><code><div class="highlight"><span></span><span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span> <span class="k">as</span> <span class="n">sess</span><span class="p">:</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">init</span><span class="p">)</span>
<span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">no_of_epochs</span><span class="p">):</span>
<span class="k">for</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">optimizer1</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">x</span><span class="p">,</span> <span class="n">Y</span><span class="p">:</span><span class="n">y</span><span class="p">})</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">%</span><span class="mi">1000</span><span class="o">==</span><span class="mi">0</span><span class="p">:</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse1</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Epoch"</span><span class="p">,(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span> <span class="s2">": Training Cost:"</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span><span class="s2">" a,b:"</span><span class="p">,</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">))</span>
<span class="n">training_cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse1</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="n">coefficient1</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">constant</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">training_cost</span><span class="p">,</span> <span class="n">coefficient1</span><span class="p">,</span> <span class="n">constant</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="nt">Epoch</span><span class="na"> 1000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 2000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 3000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 4000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 5000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 6000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 7000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 8000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 9000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 10000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 11000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 12000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 13000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 14000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 15000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 16000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 17000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 18000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 19000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 20000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 21000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 22000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 23000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 24000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 25000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">88999125000.0</span><span class="na"> 180396.42 -478869.12</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">abscissa</span><span class="p">:</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">coefficient1</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">constant</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span> <span class="p">,</span> <span class="n">ordinate</span><span class="p">,</span> <span class="s1">'ro'</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Original data'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Fitted line'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Linear Regression Result'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="https://navanchauhan.github.io//assets/gciTales/03-regression/2.png"/><h3>Quadratic Equation</h3><pre><code><div class="highlight"><span></span><span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span> <span class="k">as</span> <span class="n">sess</span><span class="p">:</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">init</span><span class="p">)</span>
<span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">no_of_epochs</span><span class="p">):</span>
<span class="k">for</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">optimizer2</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">x</span><span class="p">,</span> <span class="n">Y</span><span class="p">:</span><span class="n">y</span><span class="p">})</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">%</span><span class="mi">1000</span><span class="o">==</span><span class="mi">0</span><span class="p">:</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse2</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Epoch"</span><span class="p">,(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span> <span class="s2">": Training Cost:"</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span><span class="s2">" a,b,c:"</span><span class="p">,</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">))</span>
<span class="n">training_cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse2</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="n">coefficient1</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">coefficient2</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
<span class="n">constant</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">training_cost</span><span class="p">,</span> <span class="n">coefficient1</span><span class="p">,</span> <span class="n">coefficient2</span><span class="p">,</span> <span class="n">constant</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="nt">Epoch</span><span class="na"> 1000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">52571360000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">1002.4456</span><span class="err"> </span><span class="nc">1097.0197</span><span class="err"> </span><span class="nc">1276.6921</span>
<span class="nt">Epoch</span><span class="na"> 2000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">37798890000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">1952.4263</span><span class="err"> </span><span class="nc">2130.2825</span><span class="err"> </span><span class="nc">2469.7756</span>
<span class="nt">Epoch</span><span class="na"> 3000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">26751185000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">2839.5825</span><span class="err"> </span><span class="nc">3081.6118</span><span class="err"> </span><span class="nc">3554.351</span>
<span class="nt">Epoch</span><span class="na"> 4000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">19020106000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">3644.56</span><span class="err"> </span><span class="nc">3922.9563</span><span class="err"> </span><span class="nc">4486.3135</span>
<span class="nt">Epoch</span><span class="na"> 5000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">14060446000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">4345.042</span><span class="err"> </span><span class="nc">4621.4233</span><span class="err"> </span><span class="nc">5212.693</span>
<span class="nt">Epoch</span><span class="na"> 6000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">11201084000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">4921.1855</span><span class="err"> </span><span class="nc">5148.1504</span><span class="err"> </span><span class="nc">5689.0713</span>
<span class="nt">Epoch</span><span class="na"> 7000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">9732740000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">5364.764</span><span class="err"> </span><span class="nc">5493.0156</span><span class="err"> </span><span class="nc">5906.754</span>
<span class="nt">Epoch</span><span class="na"> 8000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">9050918000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">5685.4067</span><span class="err"> </span><span class="nc">5673.182</span><span class="err"> </span><span class="nc">5902.0728</span>
<span class="nt">Epoch</span><span class="na"> 9000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8750394000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">5906.9814</span><span class="err"> </span><span class="nc">5724.8906</span><span class="err"> </span><span class="nc">5734.746</span>
<span class="nt">Epoch</span><span class="na"> 10000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8613128000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6057.3677</span><span class="err"> </span><span class="nc">5687.3364</span><span class="err"> </span><span class="nc">5461.167</span>
<span class="nt">Epoch</span><span class="na"> 11000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8540034600.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6160.547</span><span class="err"> </span><span class="nc">5592.3022</span><span class="err"> </span><span class="nc">5122.8633</span>
<span class="nt">Epoch</span><span class="na"> 12000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8490983000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6233.9175</span><span class="err"> </span><span class="nc">5462.025</span><span class="err"> </span><span class="nc">4747.111</span>
<span class="nt">Epoch</span><span class="na"> 13000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8450816500.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6289.048</span><span class="err"> </span><span class="nc">5310.7583</span><span class="err"> </span><span class="nc">4350.6997</span>
<span class="nt">Epoch</span><span class="na"> 14000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8414082000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6333.199</span><span class="err"> </span><span class="nc">5147.394</span><span class="err"> </span><span class="nc">3943.9294</span>
<span class="nt">Epoch</span><span class="na"> 15000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8378841600.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6370.7944</span><span class="err"> </span><span class="nc">4977.1704</span><span class="err"> </span><span class="nc">3532.476</span>
<span class="nt">Epoch</span><span class="na"> 16000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8344471000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6404.468</span><span class="err"> </span><span class="nc">4803.542</span><span class="err"> </span><span class="nc">3120.2087</span>
<span class="nt">Epoch</span><span class="na"> 17000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8310785500.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6435.365</span><span class="err"> </span><span class="nc">4628.1523</span><span class="err"> </span><span class="nc">2709.1445</span>
<span class="nt">Epoch</span><span class="na"> 18000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8277482000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6465.5493</span><span class="err"> </span><span class="nc">4451.833</span><span class="err"> </span><span class="nc">2300.2783</span>
<span class="nt">Epoch</span><span class="na"> 19000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8244650000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6494.609</span><span class="err"> </span><span class="nc">4274.826</span><span class="err"> </span><span class="nc">1894.3738</span>
<span class="nt">Epoch</span><span class="na"> 20000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8212349000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6522.8247</span><span class="err"> </span><span class="nc">4098.1733</span><span class="err"> </span><span class="nc">1491.9915</span>
<span class="nt">Epoch</span><span class="na"> 21000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8180598300.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6550.6567</span><span class="err"> </span><span class="nc">3922.7405</span><span class="err"> </span><span class="nc">1093.3868</span>
<span class="nt">Epoch</span><span class="na"> 22000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8149257700.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6578.489</span><span class="err"> </span><span class="nc">3747.8362</span><span class="err"> </span><span class="nc">698.53357</span>
<span class="nt">Epoch</span><span class="na"> 23000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8118325000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6606.1973</span><span class="err"> </span><span class="nc">3573.2742</span><span class="err"> </span><span class="nc">307.3541</span>
<span class="nt">Epoch</span><span class="na"> 24000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8088001000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6632.96</span><span class="err"> </span><span class="nc">3399.878</span><span class="err"> </span><span class="nc">-79.89219</span>
<span class="nt">Epoch</span><span class="na"> 25000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8058094600.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6659.793</span><span class="err"> </span><span class="nc">3227.2517</span><span class="err"> </span><span class="nc">-463.03156</span>
<span class="nt">8058094600.0</span><span class="na"> 6659.793 3227.2517 -463.03156</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">abscissa</span><span class="p">:</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">coefficient1</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient2</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">constant</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span> <span class="p">,</span> <span class="n">ordinate</span><span class="p">,</span> <span class="s1">'ro'</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Original data'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Fitted line'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Quadratic Regression Result'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="https://navanchauhan.github.io//assets/gciTales/03-regression/3.png"/><h3>Cubic</h3><pre><code><div class="highlight"><span></span><span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span> <span class="k">as</span> <span class="n">sess</span><span class="p">:</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">init</span><span class="p">)</span>
<span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">no_of_epochs</span><span class="p">):</span>
<span class="k">for</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">optimizer3</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">x</span><span class="p">,</span> <span class="n">Y</span><span class="p">:</span><span class="n">y</span><span class="p">})</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">%</span><span class="mi">1000</span><span class="o">==</span><span class="mi">0</span><span class="p">:</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse3</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Epoch"</span><span class="p">,(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span> <span class="s2">": Training Cost:"</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span><span class="s2">" a,b,c,d:"</span><span class="p">,</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">))</span>
<span class="n">training_cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse3</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="n">coefficient1</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">coefficient2</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
<span class="n">coefficient3</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="n">constant</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">training_cost</span><span class="p">,</span> <span class="n">coefficient1</span><span class="p">,</span> <span class="n">coefficient2</span><span class="p">,</span> <span class="n">coefficient3</span><span class="p">,</span> <span class="n">constant</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="nt">Epoch</span><span class="na"> 1000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">4279814000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">670.1527</span><span class="err"> </span><span class="nc">694.4212</span><span class="err"> </span><span class="nc">751.4653</span><span class="err"> </span><span class="nc">903.9527</span>
<span class="nt">Epoch</span><span class="na"> 2000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3770950400.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">742.6414</span><span class="err"> </span><span class="nc">666.3489</span><span class="err"> </span><span class="nc">636.94525</span><span class="err"> </span><span class="nc">859.2088</span>
<span class="nt">Epoch</span><span class="na"> 3000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3717708300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">756.2582</span><span class="err"> </span><span class="nc">569.3339</span><span class="err"> </span><span class="nc">448.105</span><span class="err"> </span><span class="nc">748.23956</span>
<span class="nt">Epoch</span><span class="na"> 4000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3667464000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">769.4476</span><span class="err"> </span><span class="nc">474.0318</span><span class="err"> </span><span class="nc">265.5761</span><span class="err"> </span><span class="nc">654.75525</span>
<span class="nt">Epoch</span><span class="na"> 5000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3620040700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">782.32324</span><span class="err"> </span><span class="nc">380.54272</span><span class="err"> </span><span class="nc">89.39888</span><span class="err"> </span><span class="nc">578.5136</span>
<span class="nt">Epoch</span><span class="na"> 6000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3575265800.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">794.8898</span><span class="err"> </span><span class="nc">288.83356</span><span class="err"> </span><span class="nc">-80.5215</span><span class="err"> </span><span class="nc">519.13654</span>
<span class="nt">Epoch</span><span class="na"> 7000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3532972000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">807.1608</span><span class="err"> </span><span class="nc">198.87044</span><span class="err"> </span><span class="nc">-244.31102</span><span class="err"> </span><span class="nc">476.2061</span>
<span class="nt">Epoch</span><span class="na"> 8000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3493009200.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">819.13513</span><span class="err"> </span><span class="nc">110.64169</span><span class="err"> </span><span class="nc">-402.0677</span><span class="err"> </span><span class="nc">449.3291</span>
<span class="nt">Epoch</span><span class="na"> 9000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3455228400.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">830.80255</span><span class="err"> </span><span class="nc">24.0964</span><span class="err"> </span><span class="nc">-553.92804</span><span class="err"> </span><span class="nc">438.0652</span>
<span class="nt">Epoch</span><span class="na"> 10000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3419475500.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">842.21594</span><span class="err"> </span><span class="nc">-60.797424</span><span class="err"> </span><span class="nc">-700.0123</span><span class="err"> </span><span class="nc">441.983</span>
<span class="nt">Epoch</span><span class="na"> 11000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3385625300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">853.3363</span><span class="err"> </span><span class="nc">-144.08699</span><span class="err"> </span><span class="nc">-840.467</span><span class="err"> </span><span class="nc">460.6356</span>
<span class="nt">Epoch</span><span class="na"> 12000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3353544700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">864.19135</span><span class="err"> </span><span class="nc">-225.8125</span><span class="err"> </span><span class="nc">-975.4196</span><span class="err"> </span><span class="nc">493.57703</span>
<span class="nt">Epoch</span><span class="na"> 13000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3323125000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">874.778</span><span class="err"> </span><span class="nc">-305.98932</span><span class="err"> </span><span class="nc">-1104.9867</span><span class="err"> </span><span class="nc">540.39465</span>
<span class="nt">Epoch</span><span class="na"> 14000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3294257000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">885.1007</span><span class="err"> </span><span class="nc">-384.63474</span><span class="err"> </span><span class="nc">-1229.277</span><span class="err"> </span><span class="nc">600.65607</span>
<span class="nt">Epoch</span><span class="na"> 15000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3266820000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">895.18823</span><span class="err"> </span><span class="nc">-461.819</span><span class="err"> </span><span class="nc">-1348.4417</span><span class="err"> </span><span class="nc">673.9051</span>
<span class="nt">Epoch</span><span class="na"> 16000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3240736000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">905.0128</span><span class="err"> </span><span class="nc">-537.541</span><span class="err"> </span><span class="nc">-1462.6171</span><span class="err"> </span><span class="nc">759.7118</span>
<span class="nt">Epoch</span><span class="na"> 17000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3215895000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">914.60065</span><span class="err"> </span><span class="nc">-611.8676</span><span class="err"> </span><span class="nc">-1571.9058</span><span class="err"> </span><span class="nc">857.6638</span>
<span class="nt">Epoch</span><span class="na"> 18000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3192216800.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">923.9603</span><span class="err"> </span><span class="nc">-684.8093</span><span class="err"> </span><span class="nc">-1676.4642</span><span class="err"> </span><span class="nc">967.30475</span>
<span class="nt">Epoch</span><span class="na"> 19000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3169632300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">933.08594</span><span class="err"> </span><span class="nc">-756.3582</span><span class="err"> </span><span class="nc">-1776.4275</span><span class="err"> </span><span class="nc">1088.2198</span>
<span class="nt">Epoch</span><span class="na"> 20000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3148046300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">941.9928</span><span class="err"> </span><span class="nc">-826.6257</span><span class="err"> </span><span class="nc">-1871.9355</span><span class="err"> </span><span class="nc">1219.9702</span>
<span class="nt">Epoch</span><span class="na"> 21000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3127394800.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">950.67896</span><span class="err"> </span><span class="nc">-895.6205</span><span class="err"> </span><span class="nc">-1963.0989</span><span class="err"> </span><span class="nc">1362.1665</span>
<span class="nt">Epoch</span><span class="na"> 22000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3107608600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">959.1487</span><span class="err"> </span><span class="nc">-963.38116</span><span class="err"> </span><span class="nc">-2050.0586</span><span class="err"> </span><span class="nc">1514.4026</span>
<span class="nt">Epoch</span><span class="na"> 23000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3088618200.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">967.4355</span><span class="err"> </span><span class="nc">-1029.9625</span><span class="err"> </span><span class="nc">-2132.961</span><span class="err"> </span><span class="nc">1676.2717</span>
<span class="nt">Epoch</span><span class="na"> 24000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3070361300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">975.52875</span><span class="err"> </span><span class="nc">-1095.4292</span><span class="err"> </span><span class="nc">-2211.854</span><span class="err"> </span><span class="nc">1847.4485</span>
<span class="nt">Epoch</span><span class="na"> 25000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3052791300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">983.4346</span><span class="err"> </span><span class="nc">-1159.7922</span><span class="err"> </span><span class="nc">-2286.9412</span><span class="err"> </span><span class="nc">2027.4857</span>
<span class="nt">3052791300.0</span><span class="na"> 983.4346 -1159.7922 -2286.9412 2027.4857</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">abscissa</span><span class="p">:</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">coefficient1</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient2</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient3</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">constant</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span> <span class="p">,</span> <span class="n">ordinate</span><span class="p">,</span> <span class="s1">'ro'</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Original data'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Fitted line'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Cubic Regression Result'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="https://navanchauhan.github.io//assets/gciTales/03-regression/4.png"/><h3>Quartic</h3><pre><code><div class="highlight"><span></span><span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span> <span class="k">as</span> <span class="n">sess</span><span class="p">:</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">init</span><span class="p">)</span>
<span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">no_of_epochs</span><span class="p">):</span>
<span class="k">for</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">optimizer4</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">x</span><span class="p">,</span> <span class="n">Y</span><span class="p">:</span><span class="n">y</span><span class="p">})</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">%</span><span class="mi">1000</span><span class="o">==</span><span class="mi">0</span><span class="p">:</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse4</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Epoch"</span><span class="p">,(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span> <span class="s2">": Training Cost:"</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span><span class="s2">" a,b,c,d:"</span><span class="p">,</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">e</span><span class="p">))</span>
<span class="n">training_cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse4</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="n">coefficient1</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">coefficient2</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
<span class="n">coefficient3</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="n">coefficient4</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">)</span>
<span class="n">constant</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">training_cost</span><span class="p">,</span> <span class="n">coefficient1</span><span class="p">,</span> <span class="n">coefficient2</span><span class="p">,</span> <span class="n">coefficient3</span><span class="p">,</span> <span class="n">coefficient4</span><span class="p">,</span> <span class="n">constant</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="nt">Epoch</span><span class="na"> 1000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1902632600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">84.48304</span><span class="err"> </span><span class="nc">52.210594</span><span class="err"> </span><span class="nc">54.791424</span><span class="err"> </span><span class="nc">142.51952</span><span class="err"> </span><span class="nc">512.0343</span>
<span class="nt">Epoch</span><span class="na"> 2000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1854316200.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">88.998955</span><span class="err"> </span><span class="nc">13.073557</span><span class="err"> </span><span class="nc">14.276088</span><span class="err"> </span><span class="nc">223.55667</span><span class="err"> </span><span class="nc">1056.4655</span>
<span class="nt">Epoch</span><span class="na"> 3000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1812812400.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">92.9462</span><span class="err"> </span><span class="nc">-22.331177</span><span class="err"> </span><span class="nc">-15.262934</span><span class="err"> </span><span class="nc">327.41858</span><span class="err"> </span><span class="nc">1634.9054</span>
<span class="nt">Epoch</span><span class="na"> 4000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1775716000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">96.42522</span><span class="err"> </span><span class="nc">-54.64535</span><span class="err"> </span><span class="nc">-35.829437</span><span class="err"> </span><span class="nc">449.5028</span><span class="err"> </span><span class="nc">2239.1392</span>
<span class="nt">Epoch</span><span class="na"> 5000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1741494100.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">99.524734</span><span class="err"> </span><span class="nc">-84.43976</span><span class="err"> </span><span class="nc">-49.181057</span><span class="err"> </span><span class="nc">585.85876</span><span class="err"> </span><span class="nc">2862.4915</span>
<span class="nt">Epoch</span><span class="na"> 6000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1709199600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">102.31984</span><span class="err"> </span><span class="nc">-112.19895</span><span class="err"> </span><span class="nc">-56.808075</span><span class="err"> </span><span class="nc">733.1876</span><span class="err"> </span><span class="nc">3499.6199</span>
<span class="nt">Epoch</span><span class="na"> 7000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1678261800.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">104.87324</span><span class="err"> </span><span class="nc">-138.32709</span><span class="err"> </span><span class="nc">-59.9442</span><span class="err"> </span><span class="nc">888.79626</span><span class="err"> </span><span class="nc">4146.2944</span>
<span class="nt">Epoch</span><span class="na"> 8000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1648340600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">107.23536</span><span class="err"> </span><span class="nc">-163.15173</span><span class="err"> </span><span class="nc">-59.58964</span><span class="err"> </span><span class="nc">1050.524</span><span class="err"> </span><span class="nc">4798.979</span>
<span class="nt">Epoch</span><span class="na"> 9000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1619243400.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">109.44742</span><span class="err"> </span><span class="nc">-186.9409</span><span class="err"> </span><span class="nc">-56.53944</span><span class="err"> </span><span class="nc">1216.6432</span><span class="err"> </span><span class="nc">5454.9463</span>
<span class="nt">Epoch</span><span class="na"> 10000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1590821900.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">111.54233</span><span class="err"> </span><span class="nc">-209.91287</span><span class="err"> </span><span class="nc">-51.423084</span><span class="err"> </span><span class="nc">1385.8513</span><span class="err"> </span><span class="nc">6113.5137</span>
<span class="nt">Epoch</span><span class="na"> 11000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1563042200.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">113.54405</span><span class="err"> </span><span class="nc">-232.21953</span><span class="err"> </span><span class="nc">-44.73371</span><span class="err"> </span><span class="nc">1557.1084</span><span class="err"> </span><span class="nc">6771.7046</span>
<span class="nt">Epoch</span><span class="na"> 12000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1535855600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">115.471565</span><span class="err"> </span><span class="nc">-253.9838</span><span class="err"> </span><span class="nc">-36.851135</span><span class="err"> </span><span class="nc">1729.535</span><span class="err"> </span><span class="nc">7429.069</span>
<span class="nt">Epoch</span><span class="na"> 13000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1509255300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">117.33939</span><span class="err"> </span><span class="nc">-275.29697</span><span class="err"> </span><span class="nc">-28.0714</span><span class="err"> </span><span class="nc">1902.5308</span><span class="err"> </span><span class="nc">8083.9634</span>
<span class="nt">Epoch</span><span class="na"> 14000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1483227000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">119.1605</span><span class="err"> </span><span class="nc">-296.2472</span><span class="err"> </span><span class="nc">-18.618649</span><span class="err"> </span><span class="nc">2075.6094</span><span class="err"> </span><span class="nc">8735.381</span>
<span class="nt">Epoch</span><span class="na"> 15000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1457726700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">120.94584</span><span class="err"> </span><span class="nc">-316.915</span><span class="err"> </span><span class="nc">-8.650095</span><span class="err"> </span><span class="nc">2248.3247</span><span class="err"> </span><span class="nc">9384.197</span>
<span class="nt">Epoch</span><span class="na"> 16000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1432777300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">122.69806</span><span class="err"> </span><span class="nc">-337.30704</span><span class="err"> </span><span class="nc">1.7027153</span><span class="err"> </span><span class="nc">2420.5771</span><span class="err"> </span><span class="nc">10028.871</span>
<span class="nt">Epoch</span><span class="na"> 17000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1408365000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">124.42179</span><span class="err"> </span><span class="nc">-357.45245</span><span class="err"> </span><span class="nc">12.33499</span><span class="err"> </span><span class="nc">2592.2983</span><span class="err"> </span><span class="nc">10669.157</span>
<span class="nt">Epoch</span><span class="na"> 18000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1384480000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">126.12332</span><span class="err"> </span><span class="nc">-377.39734</span><span class="err"> </span><span class="nc">23.168756</span><span class="err"> </span><span class="nc">2763.0933</span><span class="err"> </span><span class="nc">11305.027</span>
<span class="nt">Epoch</span><span class="na"> 19000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1361116800.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">127.80568</span><span class="err"> </span><span class="nc">-397.16415</span><span class="err"> </span><span class="nc">34.160156</span><span class="err"> </span><span class="nc">2933.0452</span><span class="err"> </span><span class="nc">11935.669</span>
<span class="nt">Epoch</span><span class="na"> 20000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1338288100.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">129.4674</span><span class="err"> </span><span class="nc">-416.72803</span><span class="err"> </span><span class="nc">45.259155</span><span class="err"> </span><span class="nc">3101.7727</span><span class="err"> </span><span class="nc">12561.179</span>
<span class="nt">Epoch</span><span class="na"> 21000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1315959700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">131.11403</span><span class="err"> </span><span class="nc">-436.14285</span><span class="err"> </span><span class="nc">56.4436</span><span class="err"> </span><span class="nc">3269.3142</span><span class="err"> </span><span class="nc">13182.058</span>
<span class="nt">Epoch</span><span class="na"> 22000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1294164700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">132.74377</span><span class="err"> </span><span class="nc">-455.3779</span><span class="err"> </span><span class="nc">67.6757</span><span class="err"> </span><span class="nc">3435.3833</span><span class="err"> </span><span class="nc">13796.807</span>
<span class="nt">Epoch</span><span class="na"> 23000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1272863600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">134.35779</span><span class="err"> </span><span class="nc">-474.45316</span><span class="err"> </span><span class="nc">78.96117</span><span class="err"> </span><span class="nc">3600.264</span><span class="err"> </span><span class="nc">14406.58</span>
<span class="nt">Epoch</span><span class="na"> 24000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1252052600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">135.9583</span><span class="err"> </span><span class="nc">-493.38254</span><span class="err"> </span><span class="nc">90.268616</span><span class="err"> </span><span class="nc">3764.0078</span><span class="err"> </span><span class="nc">15010.481</span>
<span class="nt">Epoch</span><span class="na"> 25000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1231713700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">137.54753</span><span class="err"> </span><span class="nc">-512.1876</span><span class="err"> </span><span class="nc">101.59372</span><span class="err"> </span><span class="nc">3926.4897</span><span class="err"> </span><span class="nc">15609.368</span>
<span class="nt">1231713700.0</span><span class="na"> 137.54753 -512.1876 101.59372 3926.4897 15609.368</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">abscissa</span><span class="p">:</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">coefficient1</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient2</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient3</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient4</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">constant</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span> <span class="p">,</span> <span class="n">ordinate</span><span class="p">,</span> <span class="s1">'ro'</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Original data'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Fitted line'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Quartic Regression Result'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="https://navanchauhan.github.io//assets/gciTales/03-regression/5.png"/><h3>Quintic</h3><pre><code><div class="highlight"><span></span><span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span> <span class="k">as</span> <span class="n">sess</span><span class="p">:</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">init</span><span class="p">)</span>
<span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">no_of_epochs</span><span class="p">):</span>
<span class="k">for</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">optimizer5</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">x</span><span class="p">,</span> <span class="n">Y</span><span class="p">:</span><span class="n">y</span><span class="p">})</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">%</span><span class="mi">1000</span><span class="o">==</span><span class="mi">0</span><span class="p">:</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse5</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Epoch"</span><span class="p">,(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span> <span class="s2">": Training Cost:"</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span><span class="s2">" a,b,c,d,e,f:"</span><span class="p">,</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">e</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">f</span><span class="p">))</span>
<span class="n">training_cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse5</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="n">coefficient1</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">coefficient2</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
<span class="n">coefficient3</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="n">coefficient4</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">)</span>
<span class="n">coefficient5</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
<span class="n">constant</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="nt">Epoch</span><span class="na"> 1000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1409200100.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">7.949472</span><span class="err"> </span><span class="nc">7.46219</span><span class="err"> </span><span class="nc">55.626034</span><span class="err"> </span><span class="nc">184.29028</span><span class="err"> </span><span class="nc">484.00223</span><span class="err"> </span><span class="nc">1024.0083</span>
<span class="nt">Epoch</span><span class="na"> 2000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1306882400.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">8.732181</span><span class="err"> </span><span class="nc">-4.0085897</span><span class="err"> </span><span class="nc">73.25298</span><span class="err"> </span><span class="nc">315.90103</span><span class="err"> </span><span class="nc">904.08887</span><span class="err"> </span><span class="nc">2004.9749</span>
<span class="nt">Epoch</span><span class="na"> 3000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1212606000.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">9.732249</span><span class="err"> </span><span class="nc">-16.90125</span><span class="err"> </span><span class="nc">86.28379</span><span class="err"> </span><span class="nc">437.06552</span><span class="err"> </span><span class="nc">1305.055</span><span class="err"> </span><span class="nc">2966.2188</span>
<span class="nt">Epoch</span><span class="na"> 4000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1123640400.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">10.74851</span><span class="err"> </span><span class="nc">-29.82692</span><span class="err"> </span><span class="nc">98.59997</span><span class="err"> </span><span class="nc">555.331</span><span class="err"> </span><span class="nc">1698.4631</span><span class="err"> </span><span class="nc">3917.9155</span>
<span class="nt">Epoch</span><span class="na"> 5000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1039694300.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">11.75426</span><span class="err"> </span><span class="nc">-42.598194</span><span class="err"> </span><span class="nc">110.698326</span><span class="err"> </span><span class="nc">671.64355</span><span class="err"> </span><span class="nc">2085.5513</span><span class="err"> </span><span class="nc">4860.8535</span>
<span class="nt">Epoch</span><span class="na"> 6000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">960663550.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">12.745439</span><span class="err"> </span><span class="nc">-55.18337</span><span class="err"> </span><span class="nc">122.644936</span><span class="err"> </span><span class="nc">786.00214</span><span class="err"> </span><span class="nc">2466.1638</span><span class="err"> </span><span class="nc">5794.3735</span>
<span class="nt">Epoch</span><span class="na"> 7000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">886438340.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">13.721028</span><span class="err"> </span><span class="nc">-67.57168</span><span class="err"> </span><span class="nc">134.43822</span><span class="err"> </span><span class="nc">898.3691</span><span class="err"> </span><span class="nc">2839.9958</span><span class="err"> </span><span class="nc">6717.659</span>
<span class="nt">Epoch</span><span class="na"> 8000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">816913100.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">14.679965</span><span class="err"> </span><span class="nc">-79.75113</span><span class="err"> </span><span class="nc">146.07385</span><span class="err"> </span><span class="nc">1008.66895</span><span class="err"> </span><span class="nc">3206.6692</span><span class="err"> </span><span class="nc">7629.812</span>
<span class="nt">Epoch</span><span class="na"> 9000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">751971500.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">15.62181</span><span class="err"> </span><span class="nc">-91.71608</span><span class="err"> </span><span class="nc">157.55713</span><span class="err"> </span><span class="nc">1116.7715</span><span class="err"> </span><span class="nc">3565.8323</span><span class="err"> </span><span class="nc">8529.976</span>
<span class="nt">Epoch</span><span class="na"> 10000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">691508740.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">16.545347</span><span class="err"> </span><span class="nc">-103.4531</span><span class="err"> </span><span class="nc">168.88321</span><span class="err"> </span><span class="nc">1222.6348</span><span class="err"> </span><span class="nc">3916.9785</span><span class="err"> </span><span class="nc">9416.236</span>
<span class="nt">Epoch</span><span class="na"> 11000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">635382000.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">17.450052</span><span class="err"> </span><span class="nc">-114.954254</span><span class="err"> </span><span class="nc">180.03932</span><span class="err"> </span><span class="nc">1326.1565</span><span class="err"> </span><span class="nc">4259.842</span><span class="err"> </span><span class="nc">10287.99</span>
<span class="nt">Epoch</span><span class="na"> 12000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">583477250.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">18.334944</span><span class="err"> </span><span class="nc">-126.20821</span><span class="err"> </span><span class="nc">191.02948</span><span class="err"> </span><span class="nc">1427.2095</span><span class="err"> </span><span class="nc">4593.8</span><span class="err"> </span><span class="nc">11143.449</span>
<span class="nt">Epoch</span><span class="na"> 13000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">535640400.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">19.198917</span><span class="err"> </span><span class="nc">-137.20206</span><span class="err"> </span><span class="nc">201.84718</span><span class="err"> </span><span class="nc">1525.6926</span><span class="err"> </span><span class="nc">4918.5327</span><span class="err"> </span><span class="nc">11981.633</span>
<span class="nt">Epoch</span><span class="na"> 14000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">491722240.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">20.041153</span><span class="err"> </span><span class="nc">-147.92719</span><span class="err"> </span><span class="nc">212.49709</span><span class="err"> </span><span class="nc">1621.5496</span><span class="err"> </span><span class="nc">5233.627</span><span class="err"> </span><span class="nc">12800.468</span>
<span class="nt">Epoch</span><span class="na"> 15000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">451559520.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">20.860966</span><span class="err"> </span><span class="nc">-158.37456</span><span class="err"> </span><span class="nc">222.97133</span><span class="err"> </span><span class="nc">1714.7141</span><span class="err"> </span><span class="nc">5538.676</span><span class="err"> </span><span class="nc">13598.337</span>
<span class="nt">Epoch</span><span class="na"> 16000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">414988960.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">21.657421</span><span class="err"> </span><span class="nc">-168.53406</span><span class="err"> </span><span class="nc">233.27422</span><span class="err"> </span><span class="nc">1805.0874</span><span class="err"> </span><span class="nc">5833.1978</span><span class="err"> </span><span class="nc">14373.658</span>
<span class="nt">Epoch</span><span class="na"> 17000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">381837920.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">22.429693</span><span class="err"> </span><span class="nc">-178.39536</span><span class="err"> </span><span class="nc">243.39914</span><span class="err"> </span><span class="nc">1892.5883</span><span class="err"> </span><span class="nc">6116.847</span><span class="err"> </span><span class="nc">15124.394</span>
<span class="nt">Epoch</span><span class="na"> 18000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">351931300.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">23.176882</span><span class="err"> </span><span class="nc">-187.94789</span><span class="err"> </span><span class="nc">253.3445</span><span class="err"> </span><span class="nc">1977.137</span><span class="err"> </span><span class="nc">6389.117</span><span class="err"> </span><span class="nc">15848.417</span>
<span class="nt">Epoch</span><span class="na"> 19000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">325074400.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">23.898485</span><span class="err"> </span><span class="nc">-197.18741</span><span class="err"> </span><span class="nc">263.12512</span><span class="err"> </span><span class="nc">2058.6716</span><span class="err"> </span><span class="nc">6649.8037</span><span class="err"> </span><span class="nc">16543.95</span>
<span class="nt">Epoch</span><span class="na"> 20000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">301073570.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">24.593851</span><span class="err"> </span><span class="nc">-206.10497</span><span class="err"> </span><span class="nc">272.72385</span><span class="err"> </span><span class="nc">2137.1797</span><span class="err"> </span><span class="nc">6898.544</span><span class="err"> </span><span class="nc">17209.367</span>
<span class="nt">Epoch</span><span class="na"> 21000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">279727000.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">25.262104</span><span class="err"> </span><span class="nc">-214.69217</span><span class="err"> </span><span class="nc">282.14642</span><span class="err"> </span><span class="nc">2212.6372</span><span class="err"> </span><span class="nc">7135.217</span><span class="err"> </span><span class="nc">17842.854</span>
<span class="nt">Epoch</span><span class="na"> 22000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">260845550.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">25.903376</span><span class="err"> </span><span class="nc">-222.94969</span><span class="err"> </span><span class="nc">291.4003</span><span class="err"> </span><span class="nc">2284.9844</span><span class="err"> </span><span class="nc">7359.4644</span><span class="err"> </span><span class="nc">18442.408</span>
<span class="nt">Epoch</span><span class="na"> 23000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">244218030.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">26.517094</span><span class="err"> </span><span class="nc">-230.8697</span><span class="err"> </span><span class="nc">300.45532</span><span class="err"> </span><span class="nc">2354.3003</span><span class="err"> </span><span class="nc">7571.261</span><span class="err"> </span><span class="nc">19007.49</span>
<span class="nt">Epoch</span><span class="na"> 24000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">229660080.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">27.102589</span><span class="err"> </span><span class="nc">-238.44817</span><span class="err"> </span><span class="nc">309.35342</span><span class="err"> </span><span class="nc">2420.4185</span><span class="err"> </span><span class="nc">7770.5728</span><span class="err"> </span><span class="nc">19536.19</span>
<span class="nt">Epoch</span><span class="na"> 25000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">216972400.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">27.660324</span><span class="err"> </span><span class="nc">-245.69016</span><span class="err"> </span><span class="nc">318.10062</span><span class="err"> </span><span class="nc">2483.3608</span><span class="err"> </span><span class="nc">7957.354</span><span class="err"> </span><span class="nc">20027.707</span>
<span class="nt">216972400.0</span><span class="na"> 27.660324 -245.69016 318.10062 2483.3608 7957.354 20027.707</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">abscissa</span><span class="p">:</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">coefficient1</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">5</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient2</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient3</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient4</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient5</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">constant</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span> <span class="p">,</span> <span class="n">ordinate</span><span class="p">,</span> <span class="s1">'ro'</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Original data'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Fitted line'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Quintic Regression Result'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="https://navanchauhan.github.io//assets/gciTales/03-regression/6.png"/><h2>Results and Conclusion</h2><p>You just learnt Polynomial Regression using TensorFlow!</p><h2>Notes</h2><h3>Overfitting</h3><blockquote><p>> Overfitting refers to a model that models the training data too well.Overfitting happens when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data. This means that the noise or random fluctuations in the training data is picked up and learned as concepts by the model. The problem is that these concepts do not apply to new data and negatively impact the models ability to generalize.</p></blockquote><blockquote><p>Source: Machine Learning Mastery</p></blockquote><p>Basically if you train your machine learning model on a small dataset for a really large number of epochs, the model will learn all the deformities/noise in the data and will actually think that it is a normal part. Therefore when it will see some new data, it will discard that new data as noise and will impact the accuracy of the model in a negative manner</p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2019-12-10-TensorFlow-Model-Prediction</guid><title>Making Predictions using Image Classifier (TensorFlow)</title><description>Making predictions for image classification models built using TensorFlow</description><link>https://navanchauhan.github.io/posts/2019-12-10-TensorFlow-Model-Prediction</link><pubDate>Tue, 10 Dec 2019 11:10:00 +0530</pubDate><content:encoded><![CDATA[<h1>Making Predictions using Image Classifier (TensorFlow)</h1><p><em>This was tested on TF 2.x and works as of 2019-12-10</em></p><p>If you want to understand how to make your own custom image classifier, please refer to my previous post.</p><p>If you followed my last post, then you created a model which took an image of dimensions 50x50 as an input.</p><p>First we import the following if we have not imported these before</p><pre><code><div class="highlight"><span></span><span class="kn">import</span> <span class="nn">cv2</span>
<span class="kn">import</span> <span class="nn">os</span>
</div></code></pre><p>Then we read the file using OpenCV.</p><pre><code><div class="highlight"><span></span><span class="n">image</span><span class="o">=</span><span class="n">cv2</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="n">imagePath</span><span class="p">)</span>
</div></code></pre><p>The cv2. imread() function returns a NumPy array representing the image. Therefore, we need to convert it before we can use it.</p><pre><code><div class="highlight"><span></span><span class="n">image_from_array</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">fromarray</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="s1">'RGB'</span><span class="p">)</span>
</div></code></pre><p>Then we resize the image</p><pre><code><div class="highlight"><span></span><span class="n">size_image</span> <span class="o">=</span> <span class="n">image_from_array</span><span class="o">.</span><span class="n">resize</span><span class="p">((</span><span class="mi">50</span><span class="p">,</span><span class="mi">50</span><span class="p">))</span>
</div></code></pre><p>After this we create a batch consisting of only one image</p><pre><code><div class="highlight"><span></span><span class="n">p</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span><span class="n">size_image</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
</div></code></pre><p>We then convert this uint8 datatype to a float32 datatype</p><pre><code><div class="highlight"><span></span><span class="n">img</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">tf</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
</div></code></pre><p>Finally we make the prediction</p><pre><code><div class="highlight"><span></span><span class="nb">print</span><span class="p">([</span><span class="s1">'Infected'</span><span class="p">,</span><span class="s1">'Uninfected'</span><span class="p">][</span><span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">img</span><span class="p">))])</span>
</div></code></pre><p><code>Infected</code></p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2019-12-08-Image-Classifier-Tensorflow</guid><title>Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria</title><description>Tutorial on creating an image classifier model using TensorFlow which detects malaria</description><link>https://navanchauhan.github.io/posts/2019-12-08-Image-Classifier-Tensorflow</link><pubDate>Sun, 8 Dec 2019 14:16:00 +0530</pubDate><content:encoded><![CDATA[<h1>Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria</h1><p><strong>Done during Google Code-In. Org: Tensorflow.</strong></p><h2>Imports</h2><pre><code><div class="highlight"><span></span><span class="o">%</span><span class="n">tensorflow_version</span> <span class="mf">2.</span><span class="n">x</span> <span class="c1">#This is for telling Colab that you want to use TF 2.0, ignore if running on local machine</span>
<span class="kn">from</span> <span class="nn">PIL</span> <span class="kn">import</span> <span class="n">Image</span> <span class="c1"># We use the PIL Library to resize images</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">cv2</span>
<span class="kn">import</span> <span class="nn">tensorflow</span> <span class="k">as</span> <span class="nn">tf</span>
<span class="kn">from</span> <span class="nn">tensorflow.keras</span> <span class="kn">import</span> <span class="n">datasets</span><span class="p">,</span> <span class="n">layers</span><span class="p">,</span> <span class="n">models</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">keras.models</span> <span class="kn">import</span> <span class="n">Sequential</span>
<span class="kn">from</span> <span class="nn">keras.layers</span> <span class="kn">import</span> <span class="n">Conv2D</span><span class="p">,</span><span class="n">MaxPooling2D</span><span class="p">,</span><span class="n">Dense</span><span class="p">,</span><span class="n">Flatten</span><span class="p">,</span><span class="n">Dropout</span>
</div></code></pre><h2>Dataset</h2><h3>Fetching the Data</h3><pre><code><div class="highlight"><span></span><span class="err">!</span><span class="n">wget</span> <span class="n">ftp</span><span class="p">:</span><span class="o">//</span><span class="n">lhcftp</span><span class="o">.</span><span class="n">nlm</span><span class="o">.</span><span class="n">nih</span><span class="o">.</span><span class="n">gov</span><span class="o">/</span><span class="n">Open</span><span class="o">-</span><span class="n">Access</span><span class="o">-</span><span class="n">Datasets</span><span class="o">/</span><span class="n">Malaria</span><span class="o">/</span><span class="n">cell_images</span><span class="o">.</span><span class="n">zip</span>
<span class="err">!</span><span class="n">unzip</span> <span class="n">cell_images</span><span class="o">.</span><span class="n">zip</span>
</div></code></pre><h3>Processing the Data</h3><p>We resize all the images as 50x50 and add the numpy array of that image as well as their label names (Infected or Not) to common arrays.</p><pre><code><div class="highlight"><span></span><span class="n">data</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">labels</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">Parasitized</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">listdir</span><span class="p">(</span><span class="s2">"./cell_images/Parasitized/"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">parasite</span> <span class="ow">in</span> <span class="n">Parasitized</span><span class="p">:</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">image</span><span class="o">=</span><span class="n">cv2</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="s2">"./cell_images/Parasitized/"</span><span class="o">+</span><span class="n">parasite</span><span class="p">)</span>
<span class="n">image_from_array</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">fromarray</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="s1">'RGB'</span><span class="p">)</span>
<span class="n">size_image</span> <span class="o">=</span> <span class="n">image_from_array</span><span class="o">.</span><span class="n">resize</span><span class="p">((</span><span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">))</span>
<span class="n">data</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">size_image</span><span class="p">))</span>
<span class="n">labels</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">AttributeError</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">""</span><span class="p">)</span>
<span class="n">Uninfected</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">listdir</span><span class="p">(</span><span class="s2">"./cell_images/Uninfected/"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">uninfect</span> <span class="ow">in</span> <span class="n">Uninfected</span><span class="p">:</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">image</span><span class="o">=</span><span class="n">cv2</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="s2">"./cell_images/Uninfected/"</span><span class="o">+</span><span class="n">uninfect</span><span class="p">)</span>
<span class="n">image_from_array</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">fromarray</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="s1">'RGB'</span><span class="p">)</span>
<span class="n">size_image</span> <span class="o">=</span> <span class="n">image_from_array</span><span class="o">.</span><span class="n">resize</span><span class="p">((</span><span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">))</span>
<span class="n">data</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">size_image</span><span class="p">))</span>
<span class="n">labels</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">AttributeError</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">""</span><span class="p">)</span>
</div></code></pre><h3>Splitting Data</h3><pre><code><div class="highlight"><span></span><span class="n">df</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">labels</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">labels</span><span class="p">)</span>
<span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">)</span> <span class="o">=</span> <span class="n">df</span><span class="p">[(</span><span class="nb">int</span><span class="p">)(</span><span class="mf">0.1</span><span class="o">*</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">)):],</span><span class="n">df</span><span class="p">[:(</span><span class="nb">int</span><span class="p">)(</span><span class="mf">0.1</span><span class="o">*</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">))]</span>
<span class="p">(</span><span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span><span class="p">)</span> <span class="o">=</span> <span class="n">labels</span><span class="p">[(</span><span class="nb">int</span><span class="p">)(</span><span class="mf">0.1</span><span class="o">*</span><span class="nb">len</span><span class="p">(</span><span class="n">labels</span><span class="p">)):],</span><span class="n">labels</span><span class="p">[:(</span><span class="nb">int</span><span class="p">)(</span><span class="mf">0.1</span><span class="o">*</span><span class="nb">len</span><span class="p">(</span><span class="n">labels</span><span class="p">))]</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="nv">s</span><span class="o">=</span>np.arange<span class="o">(</span>X_train.shape<span class="o">[</span><span class="m">0</span><span class="o">])</span>
np.random.shuffle<span class="o">(</span>s<span class="o">)</span>
<span class="nv">X_train</span><span class="o">=</span>X_train<span class="o">[</span>s<span class="o">]</span>
<span class="nv">y_train</span><span class="o">=</span>y_train<span class="o">[</span>s<span class="o">]</span>
<span class="nv">X_train</span> <span class="o">=</span> X_train/255.0
</div></code></pre><h2>Model</h2><h3>Creating Model</h3><p>By creating a sequential model, we create a linear stack of layers.</p><p><em>Note: The input shape for the first layer is 50,50 which corresponds with the sizes of the resized images</em></p><pre><code><div class="highlight"><span></span><span class="n">model</span> <span class="o">=</span> <span class="n">models</span><span class="o">.</span><span class="n">Sequential</span><span class="p">()</span>
<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Conv2D</span><span class="p">(</span><span class="n">filters</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="s1">'same'</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s1">'relu'</span><span class="p">,</span> <span class="n">input_shape</span><span class="o">=</span><span class="p">(</span><span class="mi">50</span><span class="p">,</span><span class="mi">50</span><span class="p">,</span><span class="mi">3</span><span class="p">)))</span>
<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">MaxPooling2D</span><span class="p">(</span><span class="n">pool_size</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span>
<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Conv2D</span><span class="p">(</span><span class="n">filters</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span><span class="n">padding</span><span class="o">=</span><span class="s1">'same'</span><span class="p">,</span><span class="n">activation</span><span class="o">=</span><span class="s1">'relu'</span><span class="p">))</span>
<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">MaxPooling2D</span><span class="p">(</span><span class="n">pool_size</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span>
<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Conv2D</span><span class="p">(</span><span class="n">filters</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span><span class="n">padding</span><span class="o">=</span><span class="s2">"same"</span><span class="p">,</span><span class="n">activation</span><span class="o">=</span><span class="s2">"relu"</span><span class="p">))</span>
<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">MaxPooling2D</span><span class="p">(</span><span class="n">pool_size</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span>
<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="mf">0.2</span><span class="p">))</span>
<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Flatten</span><span class="p">())</span>
<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">500</span><span class="p">,</span><span class="n">activation</span><span class="o">=</span><span class="s2">"relu"</span><span class="p">))</span>
<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="mf">0.2</span><span class="p">))</span>
<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="n">activation</span><span class="o">=</span><span class="s2">"softmax"</span><span class="p">))</span><span class="c1">#2 represent output layer neurons </span>
<span class="n">model</span><span class="o">.</span><span class="n">summary</span><span class="p">()</span>
</div></code></pre><h3>Compiling Model</h3><p>We use the adam optimiser as it is an adaptive learning rate optimization algorithm that's been designed specifically for <em>training</em> deep neural networks, which means it changes its learning rate automaticaly to get the best results</p><pre><code><div class="highlight"><span></span><span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">optimizer</span><span class="o">=</span><span class="s2">"adam"</span><span class="p">,</span>
<span class="n">loss</span><span class="o">=</span><span class="s2">"sparse_categorical_crossentropy"</span><span class="p">,</span>
<span class="n">metrics</span><span class="o">=</span><span class="p">[</span><span class="s2">"accuracy"</span><span class="p">])</span>
</div></code></pre><h3>Training Model</h3><p>We train the model for 10 epochs on the training data and then validate it using the testing data</p><pre><code><div class="highlight"><span></span><span class="n">history</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">y_train</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">validation_data</span><span class="o">=</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span><span class="n">y_test</span><span class="p">))</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">Train</span> <span class="n">on</span> <span class="mi">24803</span> <span class="n">samples</span><span class="p">,</span> <span class="n">validate</span> <span class="n">on</span> <span class="mi">2755</span> <span class="n">samples</span>
<span class="n">Epoch</span> <span class="mi">1</span><span class="o">/</span><span class="mi">10</span>
<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">57</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0786</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9729</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
<span class="n">Epoch</span> <span class="mi">2</span><span class="o">/</span><span class="mi">10</span>
<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0746</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9731</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0290</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">0.9996</span>
<span class="n">Epoch</span> <span class="mi">3</span><span class="o">/</span><span class="mi">10</span>
<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0672</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9764</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
<span class="n">Epoch</span> <span class="mi">4</span><span class="o">/</span><span class="mi">10</span>
<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0601</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9789</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
<span class="n">Epoch</span> <span class="mi">5</span><span class="o">/</span><span class="mi">10</span>
<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0558</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9804</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
<span class="n">Epoch</span> <span class="mi">6</span><span class="o">/</span><span class="mi">10</span>
<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">57</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0513</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9819</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
<span class="n">Epoch</span> <span class="mi">7</span><span class="o">/</span><span class="mi">10</span>
<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0452</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9849</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.3190</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">0.9985</span>
<span class="n">Epoch</span> <span class="mi">8</span><span class="o">/</span><span class="mi">10</span>
<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0404</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9858</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
<span class="n">Epoch</span> <span class="mi">9</span><span class="o">/</span><span class="mi">10</span>
<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0352</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9878</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
<span class="n">Epoch</span> <span class="mi">10</span><span class="o">/</span><span class="mi">10</span>
<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0373</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9865</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
</div></code></pre><h3>Results</h3><pre><code><div class="highlight"><span></span><span class="n">accuracy</span> <span class="o">=</span> <span class="n">history</span><span class="o">.</span><span class="n">history</span><span class="p">[</span><span class="s1">'accuracy'</span><span class="p">][</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="mi">100</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">history</span><span class="o">.</span><span class="n">history</span><span class="p">[</span><span class="s1">'loss'</span><span class="p">][</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="mi">100</span>
<span class="n">val_accuracy</span> <span class="o">=</span> <span class="n">history</span><span class="o">.</span><span class="n">history</span><span class="p">[</span><span class="s1">'val_accuracy'</span><span class="p">][</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="mi">100</span>
<span class="n">val_loss</span> <span class="o">=</span> <span class="n">history</span><span class="o">.</span><span class="n">history</span><span class="p">[</span><span class="s1">'val_loss'</span><span class="p">][</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="mi">100</span>
<span class="nb">print</span><span class="p">(</span>
<span class="s1">'Accuracy:'</span><span class="p">,</span> <span class="n">accuracy</span><span class="p">,</span>
<span class="s1">'</span><span class="se">\n</span><span class="s1">Loss:'</span><span class="p">,</span> <span class="n">loss</span><span class="p">,</span>
<span class="s1">'</span><span class="se">\n</span><span class="s1">Validation Accuracy:'</span><span class="p">,</span> <span class="n">val_accuracy</span><span class="p">,</span>
<span class="s1">'</span><span class="se">\n</span><span class="s1">Validation Loss:'</span><span class="p">,</span> <span class="n">val_loss</span>
<span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">Accuracy</span><span class="p">:</span> <span class="mf">98.64532351493835</span>
<span class="n">Loss</span><span class="p">:</span> <span class="mf">3.732407123270176</span>
<span class="n">Validation</span> <span class="n">Accuracy</span><span class="p">:</span> <span class="mf">100.0</span>
<span class="n">Validation</span> <span class="n">Loss</span><span class="p">:</span> <span class="mf">0.0</span>
</div></code></pre><p>We have achieved 98% Accuracy!</p><p><a href="https://colab.research.google.com/drive/1ZswDsxLwYZEnev89MzlL5Lwt6ut7iwp- "Colab Notebook"">Link to Colab Notebook</a></p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2019-12-08-Splitting-Zips</guid><title>Splitting ZIPs into Multiple Parts</title><description>Short code snippet for splitting zips.</description><link>https://navanchauhan.github.io/posts/2019-12-08-Splitting-Zips</link><pubDate>Sun, 8 Dec 2019 13:27:00 +0530</pubDate><content:encoded><![CDATA[<h1>Splitting ZIPs into Multiple Parts</h1><p><strong>Tested on macOS</strong></p><p>Creating the archive:</p><pre><code><div class="highlight"><span></span><span class="nt">zip</span><span class="na"> -r -s 5 oodlesofnoodles.zip website/</span>
</div></code></pre><p>5 stands for each split files' size (in mb, kb and gb can also be specified)</p><p>For encrypting the zip:</p><pre><code><div class="highlight"><span></span><span class="nt">zip</span><span class="na"> -er -s 5 oodlesofnoodles.zip website</span>
</div></code></pre><p>Extracting Files</p><p>First we need to collect all parts, then</p><pre><code><div class="highlight"><span></span><span class="nt">zip</span><span class="na"> -F oodlesofnoodles.zip --out merged.zip</span>
</div></code></pre>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2019-12-04-Google-Teachable-Machines</guid><title>Image Classifier With Teachable Machines</title><description>Tutorial on creating a custom image classifier quickly with Google Teachanle Machines</description><link>https://navanchauhan.github.io/posts/2019-12-04-Google-Teachable-Machines</link><pubDate>Wed, 4 Dec 2019 18:23:00 +0530</pubDate><content:encoded><![CDATA[<h1>Image Classifier With Teachable Machines</h1><p>Made for Google Code-In</p><p><strong>Task Description</strong></p><p>Using Glitch and the Teachable Machines, build a Book Detector with Tensorflow.js. When a book is recognized, the code would randomly suggest a book/tell a famous quote from a book. Here is an example Project to get you started: https://glitch.com/~voltaic-acorn</p><h3>Details</h3><ol><li>Collecting Data</li></ol><p>Teachable Machine allows you to create your dataset just by using your webcam! I created a database consisting of three classes ( Three Books ) and approximately grabbed 100 pictures for each book/class</p><img src="https://navanchauhan.github.io//assets/gciTales/01-teachableMachines/01-collect.png"/><ol start="2"><li>Training</li></ol><p>Training on teachable machines is as simple as clicking the train button. I did not even have to modify any configurations.</p><img src="https://navanchauhan.github.io//assets/gciTales/01-teachableMachines/02-train.png"/><ol start="3"><li>Finding Labels</li></ol><p>Because I originally entered the entire name of the book and it's author's name as the label, the class name got truncated (Note to self, use shorter class names :p ). I then modified the code to print the modified label names in an alert box.</p><img src="https://navanchauhan.github.io//assets/gciTales/01-teachableMachines/03-label.png"/><img src="https://navanchauhan.github.io//assets/gciTales/01-teachableMachines/04-alert.png"/><ol start="4"><li>Adding a suggestions function</li></ol><p>I first added a text field on the main page and then modified the JavaScript file to suggest a similar book whenever the model predicted with an accuracy >= 98%</p><img src="https://navanchauhan.github.io//assets/gciTales/01-teachableMachines/05-html.png"/><img src="https://navanchauhan.github.io//assets/gciTales/01-teachableMachines/06-js.png"/><ol start="5"><li>Running!</li></ol><p>Here it is running!</p><img src="https://navanchauhan.github.io//assets/gciTales/01-teachableMachines/07-eg.png"/><img src="https://navanchauhan.github.io//assets/gciTales/01-teachableMachines/08-eg.png"/><p>Remix this project:-</p><p>https://luminous-opinion.glitch.me</p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/publications/2019-05-14-Detecting-Driver-Fatigue-Over-Speeding-and-Speeding-up-Post-Accident-Response</guid><title>Detecting Driver Fatigue, Over-Speeding, and Speeding up Post-Accident Response</title><description>This paper is about Detecting Driver Fatigue, Over-Speeding, and Speeding up Post-Accident Response.</description><link>https://navanchauhan.github.io/publications/2019-05-14-Detecting-Driver-Fatigue-Over-Speeding-and-Speeding-up-Post-Accident-Response</link><pubDate>Tue, 14 May 2019 02:42:00 +0530</pubDate><content:encoded><![CDATA[<h1>Detecting Driver Fatigue, Over-Speeding, and Speeding up Post-Accident Response</h1><blockquote><p>Based on the project showcased at Toyota Hackathon, IITD - 17/18th December 2018</p></blockquote><p>Edit: It seems like I haven't mentioned Adrian Rosebrock of PyImageSearch anywhere. I apologize for this mistake.</p><p><a href="https://www.irjet.net/archives/V6/i5/IRJET-V6I5318.pdf">Download paper here</a></p><p>Recommended citation:</p><h3>ATP</h3><pre><code><div class="highlight"><span></span>Chauhan, N. <span class="o">(</span><span class="m">2019</span><span class="o">)</span>. <span class="p">&</span>quot<span class="p">;</span>Detecting Driver Fatigue, Over-Speeding, and Speeding up Post-Accident Response.<span class="p">&</span>quot<span class="p">;</span> <i>International Research Journal of Engineering and Technology <span class="o">(</span>IRJET<span class="o">)</span>, <span class="m">6</span><span class="o">(</span><span class="m">5</span><span class="o">)</span></i>.
</div></code></pre><h3>BibTeX</h3><pre><code><div class="highlight"><span></span>@article<span class="o">{</span>chauhan_2019, <span class="nv">title</span><span class="o">={</span>Detecting Driver Fatigue, Over-Speeding, and Speeding up Post-Accident Response<span class="o">}</span>, <span class="nv">volume</span><span class="o">={</span><span class="m">6</span><span class="o">}</span>, <span class="nv">url</span><span class="o">={</span>https://www.irjet.net/archives/V6/i5/IRJET-V6I5318.pdf<span class="o">}</span>, <span class="nv">number</span><span class="o">={</span><span class="m">5</span><span class="o">}</span>, <span class="nv">journal</span><span class="o">={</span>International Research Journal of Engineering and Technology <span class="o">(</span>IRJET<span class="o">)}</span>, <span class="nv">author</span><span class="o">={</span>Chauhan, Navan<span class="o">}</span>, <span class="nv">year</span><span class="o">={</span><span class="m">2019</span><span class="o">}}</span>
</div></code></pre>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2019-05-05-Custom-Snowboard-Anemone-Theme</guid><title>Creating your own custom theme for Snowboard or Anemone</title><description>Tutorial on creating your own custom theme for Snowboard or Anemone</description><link>https://navanchauhan.github.io/posts/2019-05-05-Custom-Snowboard-Anemone-Theme</link><pubDate>Sun, 5 May 2019 12:34:00 +0530</pubDate><content:encoded><![CDATA[<h1>Creating your own custom theme for Snowboard or Anemone</h1><h3>Contents</h3><ul><li>Getting Started</li><li>Theme Configuration</li><li>Creating Icons</li><li>Exporting Icons</li><li>Icon Masks</li><li>Packaging</li><li>Building the DEB</li></ul><h2>Getting Started</h2><p><strong>Note: Without the proper folder structure, your theme may not show up!</strong></p><ul><li>Create a new folder called <code>themeName.theme</code> (Replace themeName with your desired theme name)</li><li>Within <code>themeName.theme</code> folder, create another folder called <code>IconBundles</code> (<strong>You cannot change this name</strong>)</li></ul><h2>Theme Configuration</h2><ul><li>Now, inside the <code>themeName.theme</code> folder, create a file called <code>Info.plist</code> and paste the following</li></ul><pre><code><div class="highlight"><span></span><?xml <span class="nv">version</span><span class="o">=</span><span class="s2">"1.0"</span> <span class="nv">encoding</span><span class="o">=</span><span class="s2">"UTF-8"</span>?>
<!DOCTYPE plist PUBLIC <span class="s2">"-//Apple//DTD PLIST 1.0//EN"</span> <span class="s2">"http://www.apple.com/DTDs/PropertyList-1.0.dtd"</span>>
<plist <span class="nv">version</span><span class="o">=</span><span class="s2">"1.0"</span>>
<dict>
<key>PackageName</key>
<string>ThemeName</string>
<key>ThemeType</key>
<string>Icons</string>
</dict>
</plist>
</div></code></pre><ul><li>Replace <code>PackageName</code> with the name of the Pacakge and replace <code>ThemeName</code> with the Theme Name</li></ul><p>Now, you might ask what is the difference between <code>PackageName</code> and <code>ThemeName</code>?</p><p>Well, if for example you want to publish two variants of your icons, one dark and one white but you do not want the user to seperately install them. Then, you would name the package <code>MyTheme</code> and include two themes <code>Blackie</code> and <code>White</code> thus creating two entries. More about this in the end</p><h2>Creating Icons</h2><ul><li>Open up the Image Editor of your choice and create a new file having a resolution of 512x512</li></ul><p><strong>Note: Due to IconBundles, we just need to create the icons in one size and they get resized automaticaly</strong> :ghost:</p><p><strong>Want to create rounded icons?</strong> Create them squared only, we will learn how to apply masks!</p><h2>Exporting Icons</h2><p><strong>Note: All icons must be saved as <code>*.png</code> (Tip: This means you can even create partially transparent icons!)</strong></p><ul><li>All Icons must be saved in <code>themeName.theme>IconBundles</code> as <code>bundleID-large.png</code></li></ul><h5>Finding BundleIDs</h5><p><strong>Stock Application BundleIDs</strong></p><table><thead><tr><th>Name</th><th>BundleID</th></tr></thead><tbody><tr><td>App Store</td><td>com.apple.AppStore</td></tr><tr><td>Apple Watch</td><td>com.apple.Bridge</td></tr><tr><td>Calculator</td><td>com.apple.calculator</td></tr><tr><td>Calendar</td><td>com.apple.mobilecal</td></tr><tr><td>Camera</td><td>com.apple.camera</td></tr><tr><td>Classroom</td><td>com.apple.classroom</td></tr><tr><td>Clock</td><td>com.apple.mobiletimer</td></tr><tr><td>Compass</td><td>com.apple.compass</td></tr><tr><td>FaceTime</td><td>com.apple.facetime</td></tr><tr><td>Files</td><td>com.apple.DocumentsApp</td></tr><tr><td>Game Center</td><td>com.apple.gamecenter</td></tr><tr><td>Health</td><td>com.apple.Health</td></tr><tr><td>Home</td><td>com.apple.Home</td></tr><tr><td>iBooks</td><td>com.apple.iBooks</td></tr><tr><td>iTunes Store</td><td>com.apple.MobileStore</td></tr><tr><td>Mail</td><td>com.apple.mobilemail</td></tr><tr><td>Maps</td><td>com.apple.Maps</td></tr><tr><td>Measure</td><td>com.apple.measure</td></tr><tr><td>Messages</td><td>com.apple.MobileSMS</td></tr><tr><td>Music</td><td>com.apple.Music</td></tr><tr><td>News</td><td>com.apple.news</td></tr><tr><td>Notes</td><td>com.apple.mobilenotes</td></tr><tr><td>Phone</td><td>com.apple.mobilephone</td></tr><tr><td>Photo Booth</td><td>com.apple.Photo-Booth</td></tr><tr><td>Photos</td><td>com.apple.mobileslideshow</td></tr><tr><td>Playgrounds</td><td>come.apple.Playgrounds</td></tr><tr><td>Podcasts</td><td>com.apple.podcasts</td></tr><tr><td>Reminders</td><td>com.apple.reminders</td></tr><tr><td>Safari</td><td>com.apple.mobilesafari</td></tr><tr><td>Settings</td><td>com.apple.Preferences</td></tr><tr><td>Stocks</td><td>com.apple.stocks</td></tr><tr><td>Tips</td><td>com.apple.tips</td></tr><tr><td>TV</td><td>com.apple.tv</td></tr><tr><td>Videos</td><td>com.apple.videos</td></tr><tr><td>Voice Memos</td><td>com.apple.VoiceMemos</td></tr><tr><td>Wallet</td><td>com.apple.Passbook</td></tr><tr><td>Weather</td><td>com.apple.weather</td></tr></tbody></table><p><strong>3rd Party Applications BundleID</strong> Click <a href="http://offcornerdev.com/bundleid.html">here</a></p><h3>Icon Masks</h3><ul><li>Getting the Classic Rounded Rectangle Masks</li></ul><p>In your <code>Info.plist</code> file add the following value between <code><dict></code> and </dict>
```
<key>IB-MaskIcons</key>
<true/>
```
* Custom Icon Masks
**NOTE: This is an optional step, if you do not want Icon Masks, skip this step**
* Inside your `themeName.theme` folder, create another folder called 'Bundles'
* Inside `Bundles` create another folder called `com.apple.mobileicons.framework`
#### Designing Masks
**Masking does not support IconBundles, therefore you need to save the masks for each of the following**
| File | Resolution |
|------|------------|
| AppIconMask@2x~ipad.png | 152x512 |
| AppIconMask@2x~iphone.png | 120x120 |
| AppIconMask@3x~ipad.png | 180x180 |
| AppIconMask@3x~iphone.png | 180x180 |
| AppIconMask~ipad.png | 76x76 |
| DocumentBadgeMask-20@2x.png | 40x40 |
| DocumentBadgeMask-145@2x.png | 145x145 |
| GameAppIconMask@2x.png | 84x84 |
| NotificationAppIconMask@2x.png | 40x40 |
| NotificationAppIconMask@3x.png | 60x60 |
| SpotlightAppIconMask@2x.png | 80x80 |
| SpotlightAppIconMask@3x.png | 120x120 |
| TableIconMask@2x.png | 58x58 |
| TableIconOutline@2x.png | 58x58 |
* While creating the mask, make sure that the background is not a solid colour and is transparent
* Whichever area you want to make visible, it should be coloured in black
Example (Credits: Pinpal):
![Credit: Pinpal](https://pinpal.github.io/assets/theme-guide/mask-demo.png)
would result in
![Credit: Pinpal](https://pinpal.github.io/assets/theme-guide/mask-result.png)
### Packaging
* Create a new folder outside `themeName.theme` with the name you want to be shown on Cydia, e.g `themeNameForCydia`
* Create another folder called `DEBIAN` in `themeNameForCydia` (It needs to be uppercase)
* In `DEBIAN` create an extensionless file called `control` and edit it using your favourite text editor
Paste the following in it, replacing `yourname`, `themename`, `Theme Name`, `A theme with beautiful icons!` and `Your Name` with your details:
```
Package: com.yourname.themename
Name: Theme Name
Version: 1.0
Architecture: iphoneos-arm
Description: A theme with beautiful icons!
Author: Your Name
Maintainer: Your Name
Section: Themes
```
* Important Notes:
* The package field **MUST** be lower case!
* The version field **MUST** be changed everytime you update your theme!
* The control file **MUST** have an extra blank line at the bottom!
* Now, Create another folder called `Library` in `themeNameForCydia`
* In `Library` create another folder called `Themes`
* Finally, copy `themeName.theme` to the `Themes` folder (**Copy the entire folder, not just the contents**)
### Building the DEB
**For building the deb you need a `*nix` system, otherwise you can build it using your iPhones**
##### Pre-Requisite for MacOS users
1) Install Homenbrew `/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"` (Run this in the terminal)
2) Install dpkg, by running `brew install dpkg`
**There is a terrible thing called .DS_Store which if not removed, will cause a problem durin either build or installation**
* To remove this we first need to open the folder in the terminal
* Launch the Terminal and then drag-and-drop the 'themeNameForCydia' folder on the Terminal icon in the dock
* Now, run `find . -name "*.DS_Store" -type f -delete`
##### Pre-Requisite for Windows Users
* SSH into your iPhone and drag and drop the `themeNameForCyia` folder on the terminal
##### Common Instructions
* You should be at the root of the folder in the terminal, i.e Inside `themeNameForCydia`
* running `ls` should show the following output
```
DEBIAN Library
```
* Now, in the terminal enter the following `cd .. && dpkg -b themeNameForCydia `
**Now you will have the `themeNameForCydia.deb` in the same directory**
You can share this with your friends :+1:
</p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/hello-world</guid><title>Hello World</title><description>My first post.</description><link>https://navanchauhan.github.io/posts/hello-world</link><pubDate>Tue, 16 Apr 2019 17:39:00 +0530</pubDate><content:encoded><![CDATA[<h1>Hello World</h1><p><strong>Why a Hello World post?</strong></p><p>Just re-did the entire website using Publish (Publish by John Sundell). So, a new hello world post :)</p>]]></content:encoded></item><item><guid isPermaLink="true">https://navanchauhan.github.io/posts/2010-01-24-experiments</guid><title>Experiments</title><description>Just a markdown file for all experiments related to the website</description><link>https://navanchauhan.github.io/posts/2010-01-24-experiments</link><pubDate>Sun, 24 Jan 2010 23:43:00 +0530</pubDate><content:encoded><![CDATA[<h1>Experiments</h1><p>https://s3-us-west-2.amazonaws.com/s.cdpn.io/148866/img-original.jpg</p><iframe frameborder="0" class="juxtapose" width="100%" height="675" src="https://cdn.knightlab.com/libs/juxtapose/latest/embed/index.html?uid=c600ff8c-3edc-11ea-b9b8-0edaf8f81e27"></iframe>]]></content:encoded></item></channel></rss>
|