1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"/><meta name="og:site_name" content="Navan Chauhan"/><link rel="canonical" href="https://navanchauhan.github.io/posts/2019-12-16-TensorFlow-Polynomial-Regression"/><meta name="twitter:url" content="https://navanchauhan.github.io/posts/2019-12-16-TensorFlow-Polynomial-Regression"/><meta name="og:url" content="https://navanchauhan.github.io/posts/2019-12-16-TensorFlow-Polynomial-Regression"/><title>Polynomial Regression Using TensorFlow | Navan Chauhan</title><meta name="twitter:title" content="Polynomial Regression Using TensorFlow | Navan Chauhan"/><meta name="og:title" content="Polynomial Regression Using TensorFlow | Navan Chauhan"/><meta name="description" content="Polynomial regression using TensorFlow"/><meta name="twitter:description" content="Polynomial regression using TensorFlow"/><meta name="og:description" content="Polynomial regression using TensorFlow"/><meta name="twitter:card" content="summary"/><link rel="stylesheet" href="/styles.css" type="text/css"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><link rel="shortcut icon" href="/images/favicon.png" type="image/png"/><link rel="alternate" href="/feed.rss" type="application/rss+xml" title="Subscribe to Navan Chauhan"/><meta name="twitter:image" content="https://navanchauhan.github.io/images/logo.png"/><meta name="og:image" content="https://navanchauhan.github.io/images/logo.png"/></head><head><script>var _paq=window._paq=window._paq||[];_paq.push(['trackPageView']),_paq.push(['enableLinkTracking']),function(){var a='https://navanspi.duckdns.org:6969/analytics/';_paq.push(['setTrackerUrl',a+'matomo.php']),_paq.push(['setSiteId','2']);var e=document,t=e.createElement('script'),p=e.getElementsByTagName('script')[0];t.type='text/javascript',t.async=!0,t.src=a+'matomo.js',p.parentNode.insertBefore(t,p)}();</script></head><body class="item-page"><header><div class="wrapper"><a class="site-name" href="/">Navan Chauhan</a><nav><ul><li><a href="/about">About Me</a></li><li><a class="selected" href="/posts">Posts</a></li><li><a href="/publications">Publications</a></li><li><a href="/assets/résumé.pdf">Résumé</a></li><li><a href="https://navanchauhan.github.io/repo">Repo</a></li></ul></nav></div></header><div class="wrapper"><article><div class="content"><span class="reading-time">17 minute read</span><span class="reading-time">Created on December 16, 2019</span><span class="reading-time">Last modified on September 15, 2020</span><h1>Polynomial Regression Using TensorFlow</h1><p><strong>In this tutorial you will learn about polynomial regression and how you can implement it in Tensorflow.</strong></p><p>In this, we will be performing polynomial regression using 5 types of equations -</p><ul><li>Linear</li><li>Quadratic</li><li>Cubic</li><li>Quartic</li><li>Quintic</li></ul><h2>Regression</h2><h3>What is Regression?</h3><p>Regression is a statistical measurement that is used to try to determine the relationship between a dependent variable (often denoted by Y), and series of varying variables (called independent variables, often denoted by X ).</p><h3>What is Polynomial Regression</h3><p>This is a form of Regression Analysis where the relationship between Y and X is denoted as the nth degree/power of X. Polynomial regression even fits a non-linear relationship (e.g when the points don't form a straight line).</p><h2>Imports</h2><pre><code><div class="highlight"><span></span><span class="kn">import</span> <span class="nn">tensorflow.compat.v1</span> <span class="k">as</span> <span class="nn">tf</span>
<span class="n">tf</span><span class="o">.</span><span class="n">disable_v2_behavior</span><span class="p">()</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
</div></code></pre><h2>Dataset</h2><h3>Creating Random Data</h3><p>Even though in this tutorial we will use a Position Vs Salary dataset, it is important to know how to create synthetic data</p><p>To create 50 values spaced evenly between 0 and 50, we use NumPy's linspace function</p><p><code>linspace(lower_limit, upper_limit, no_of_observations)</code></p><pre><code><div class="highlight"><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span>
</div></code></pre><p>We use the following function to add noise to the data, so that our values</p><pre><code><div class="highlight"><span></span><span class="n">x</span> <span class="o">+=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span>
<span class="n">y</span> <span class="o">+=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span>
</div></code></pre><h3>Position vs Salary Dataset</h3><p>We will be using https://drive.google.com/file/d/1tNL4jxZEfpaP4oflfSn6pIHJX7Pachm9/view (Salary vs Position Dataset)</p><pre><code><div class="highlight"><span></span><span class="nt">!wget</span><span class="na"> --no-check-certificate 'https</span><span class="p">:</span><span class="nc">//docs.google.com/uc?export</span><span class="o">=</span><span class="l">download&id=1tNL4jxZEfpaP4oflfSn6pIHJX7Pachm9' -O data.csv</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">"data.csv"</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">df</span> <span class="c1"># this gives us a preview of the dataset we are working with</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="o">|</span> <span class="n">Position</span> <span class="o">|</span> <span class="n">Level</span> <span class="o">|</span> <span class="n">Salary</span> <span class="o">|</span>
<span class="o">|-------------------|-------|---------|</span>
<span class="o">|</span> <span class="n">Business</span> <span class="n">Analyst</span> <span class="o">|</span> <span class="mi">1</span> <span class="o">|</span> <span class="mi">45000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Junior</span> <span class="n">Consultant</span> <span class="o">|</span> <span class="mi">2</span> <span class="o">|</span> <span class="mi">50000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Senior</span> <span class="n">Consultant</span> <span class="o">|</span> <span class="mi">3</span> <span class="o">|</span> <span class="mi">60000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Manager</span> <span class="o">|</span> <span class="mi">4</span> <span class="o">|</span> <span class="mi">80000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Country</span> <span class="n">Manager</span> <span class="o">|</span> <span class="mi">5</span> <span class="o">|</span> <span class="mi">110000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Region</span> <span class="n">Manager</span> <span class="o">|</span> <span class="mi">6</span> <span class="o">|</span> <span class="mi">150000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Partner</span> <span class="o">|</span> <span class="mi">7</span> <span class="o">|</span> <span class="mi">200000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">Senior</span> <span class="n">Partner</span> <span class="o">|</span> <span class="mi">8</span> <span class="o">|</span> <span class="mi">300000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">C</span><span class="o">-</span><span class="n">level</span> <span class="o">|</span> <span class="mi">9</span> <span class="o">|</span> <span class="mi">500000</span> <span class="o">|</span>
<span class="o">|</span> <span class="n">CEO</span> <span class="o">|</span> <span class="mi">10</span> <span class="o">|</span> <span class="mi">1000000</span> <span class="o">|</span>
</div></code></pre><p>We convert the salary column as the ordinate (y-coordinate) and level column as the abscissa</p><pre><code><div class="highlight"><span></span><span class="n">abscissa</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">"Level"</span><span class="p">]</span><span class="o">.</span><span class="n">to_list</span><span class="p">()</span> <span class="c1"># abscissa = [1,2,3,4,5,6,7,8,9,10]</span>
<span class="n">ordinate</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">"Salary"</span><span class="p">]</span><span class="o">.</span><span class="n">to_list</span><span class="p">()</span> <span class="c1"># ordinate = [45000,50000,60000,80000,110000,150000,200000,300000,500000,1000000]</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">abscissa</span><span class="p">)</span> <span class="c1"># no of observations</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Salary'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Position'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Salary vs Position"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="/assets/gciTales/03-regression/1.png"/><h2>Defining Stuff</h2><pre><code><div class="highlight"><span></span><span class="n">X</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">placeholder</span><span class="p">(</span><span class="s2">"float"</span><span class="p">)</span>
<span class="n">Y</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">placeholder</span><span class="p">(</span><span class="s2">"float"</span><span class="p">)</span>
</div></code></pre><h3>Defining Variables</h3><p>We first define all the coefficients and constant as tensorflow variables having a random initial value</p><pre><code><div class="highlight"><span></span><span class="n">a</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"a"</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"b"</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"c"</span><span class="p">)</span>
<span class="n">d</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"d"</span><span class="p">)</span>
<span class="n">e</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"e"</span><span class="p">)</span>
<span class="n">f</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(),</span> <span class="n">name</span> <span class="o">=</span> <span class="s2">"f"</span><span class="p">)</span>
</div></code></pre><h3>Model Configuration</h3><pre><code><div class="highlight"><span></span><span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">0.2</span>
<span class="n">no_of_epochs</span> <span class="o">=</span> <span class="mi">25000</span>
</div></code></pre><h3>Equations</h3><pre><code><div class="highlight"><span></span><span class="n">deg1</span> <span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="n">X</span> <span class="o">+</span> <span class="n">b</span>
<span class="n">deg2</span> <span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">b</span><span class="o">*</span><span class="n">X</span> <span class="o">+</span> <span class="n">c</span>
<span class="n">deg3</span> <span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">b</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">c</span><span class="o">*</span><span class="n">X</span> <span class="o">+</span> <span class="n">d</span>
<span class="n">deg4</span> <span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span> <span class="o">+</span> <span class="n">b</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">c</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">d</span><span class="o">*</span><span class="n">X</span> <span class="o">+</span> <span class="n">e</span>
<span class="n">deg5</span> <span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">5</span><span class="p">)</span> <span class="o">+</span> <span class="n">b</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span> <span class="o">+</span> <span class="n">c</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">d</span><span class="o">*</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">e</span><span class="o">*</span><span class="n">X</span> <span class="o">+</span> <span class="n">f</span>
</div></code></pre><h3>Cost Function</h3><p>We use the Mean Squared Error Function</p><pre><code><div class="highlight"><span></span><span class="n">mse1</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">deg1</span><span class="o">-</span><span class="n">Y</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">n</span><span class="p">)</span>
<span class="n">mse2</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">deg2</span><span class="o">-</span><span class="n">Y</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">n</span><span class="p">)</span>
<span class="n">mse3</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">deg3</span><span class="o">-</span><span class="n">Y</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">n</span><span class="p">)</span>
<span class="n">mse4</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">deg4</span><span class="o">-</span><span class="n">Y</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">n</span><span class="p">)</span>
<span class="n">mse5</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="n">deg5</span><span class="o">-</span><span class="n">Y</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">n</span><span class="p">)</span>
</div></code></pre><h3>Optimizer</h3><p>We use the AdamOptimizer for the polynomial functions and GradientDescentOptimizer for the linear function</p><pre><code><div class="highlight"><span></span><span class="n">optimizer1</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">GradientDescentOptimizer</span><span class="p">(</span><span class="n">learning_rate</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">mse1</span><span class="p">)</span>
<span class="n">optimizer2</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">AdamOptimizer</span><span class="p">(</span><span class="n">learning_rate</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">mse2</span><span class="p">)</span>
<span class="n">optimizer3</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">AdamOptimizer</span><span class="p">(</span><span class="n">learning_rate</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">mse3</span><span class="p">)</span>
<span class="n">optimizer4</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">AdamOptimizer</span><span class="p">(</span><span class="n">learning_rate</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">mse4</span><span class="p">)</span>
<span class="n">optimizer5</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">AdamOptimizer</span><span class="p">(</span><span class="n">learning_rate</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">mse5</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">init</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">global_variables_initializer</span><span class="p">()</span>
</div></code></pre><h2>Model Predictions</h2><p>For each type of equation first we make the model predict the values of the coefficient(s) and constant, once we get these values we use it to predict the Y values using the X values. We then plot it to compare the actual data and predicted line.</p><h3>Linear Equation</h3><pre><code><div class="highlight"><span></span><span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span> <span class="k">as</span> <span class="n">sess</span><span class="p">:</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">init</span><span class="p">)</span>
<span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">no_of_epochs</span><span class="p">):</span>
<span class="k">for</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">optimizer1</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">x</span><span class="p">,</span> <span class="n">Y</span><span class="p">:</span><span class="n">y</span><span class="p">})</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">%</span><span class="mi">1000</span><span class="o">==</span><span class="mi">0</span><span class="p">:</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse1</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Epoch"</span><span class="p">,(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span> <span class="s2">": Training Cost:"</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span><span class="s2">" a,b:"</span><span class="p">,</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">))</span>
<span class="n">training_cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse1</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="n">coefficient1</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">constant</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">training_cost</span><span class="p">,</span> <span class="n">coefficient1</span><span class="p">,</span> <span class="n">constant</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="nt">Epoch</span><span class="na"> 1000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 2000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 3000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 4000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 5000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 6000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 7000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 8000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 9000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 10000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 11000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 12000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 13000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 14000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 15000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 16000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 17000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 18000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 19000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 20000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 21000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 22000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 23000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 24000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">Epoch</span><span class="na"> 25000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">88999125000.0</span><span class="err"> </span><span class="nc">a,b</span><span class="p">:</span><span class="err"> </span><span class="nc">180396.42</span><span class="err"> </span><span class="nc">-478869.12</span>
<span class="nt">88999125000.0</span><span class="na"> 180396.42 -478869.12</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">abscissa</span><span class="p">:</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">coefficient1</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">constant</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span> <span class="p">,</span> <span class="n">ordinate</span><span class="p">,</span> <span class="s1">'ro'</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Original data'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Fitted line'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Linear Regression Result'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="/assets/gciTales/03-regression/2.png"/><h3>Quadratic Equation</h3><pre><code><div class="highlight"><span></span><span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span> <span class="k">as</span> <span class="n">sess</span><span class="p">:</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">init</span><span class="p">)</span>
<span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">no_of_epochs</span><span class="p">):</span>
<span class="k">for</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">optimizer2</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">x</span><span class="p">,</span> <span class="n">Y</span><span class="p">:</span><span class="n">y</span><span class="p">})</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">%</span><span class="mi">1000</span><span class="o">==</span><span class="mi">0</span><span class="p">:</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse2</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Epoch"</span><span class="p">,(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span> <span class="s2">": Training Cost:"</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span><span class="s2">" a,b,c:"</span><span class="p">,</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">))</span>
<span class="n">training_cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse2</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="n">coefficient1</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">coefficient2</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
<span class="n">constant</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">training_cost</span><span class="p">,</span> <span class="n">coefficient1</span><span class="p">,</span> <span class="n">coefficient2</span><span class="p">,</span> <span class="n">constant</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="nt">Epoch</span><span class="na"> 1000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">52571360000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">1002.4456</span><span class="err"> </span><span class="nc">1097.0197</span><span class="err"> </span><span class="nc">1276.6921</span>
<span class="nt">Epoch</span><span class="na"> 2000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">37798890000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">1952.4263</span><span class="err"> </span><span class="nc">2130.2825</span><span class="err"> </span><span class="nc">2469.7756</span>
<span class="nt">Epoch</span><span class="na"> 3000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">26751185000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">2839.5825</span><span class="err"> </span><span class="nc">3081.6118</span><span class="err"> </span><span class="nc">3554.351</span>
<span class="nt">Epoch</span><span class="na"> 4000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">19020106000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">3644.56</span><span class="err"> </span><span class="nc">3922.9563</span><span class="err"> </span><span class="nc">4486.3135</span>
<span class="nt">Epoch</span><span class="na"> 5000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">14060446000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">4345.042</span><span class="err"> </span><span class="nc">4621.4233</span><span class="err"> </span><span class="nc">5212.693</span>
<span class="nt">Epoch</span><span class="na"> 6000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">11201084000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">4921.1855</span><span class="err"> </span><span class="nc">5148.1504</span><span class="err"> </span><span class="nc">5689.0713</span>
<span class="nt">Epoch</span><span class="na"> 7000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">9732740000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">5364.764</span><span class="err"> </span><span class="nc">5493.0156</span><span class="err"> </span><span class="nc">5906.754</span>
<span class="nt">Epoch</span><span class="na"> 8000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">9050918000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">5685.4067</span><span class="err"> </span><span class="nc">5673.182</span><span class="err"> </span><span class="nc">5902.0728</span>
<span class="nt">Epoch</span><span class="na"> 9000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8750394000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">5906.9814</span><span class="err"> </span><span class="nc">5724.8906</span><span class="err"> </span><span class="nc">5734.746</span>
<span class="nt">Epoch</span><span class="na"> 10000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8613128000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6057.3677</span><span class="err"> </span><span class="nc">5687.3364</span><span class="err"> </span><span class="nc">5461.167</span>
<span class="nt">Epoch</span><span class="na"> 11000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8540034600.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6160.547</span><span class="err"> </span><span class="nc">5592.3022</span><span class="err"> </span><span class="nc">5122.8633</span>
<span class="nt">Epoch</span><span class="na"> 12000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8490983000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6233.9175</span><span class="err"> </span><span class="nc">5462.025</span><span class="err"> </span><span class="nc">4747.111</span>
<span class="nt">Epoch</span><span class="na"> 13000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8450816500.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6289.048</span><span class="err"> </span><span class="nc">5310.7583</span><span class="err"> </span><span class="nc">4350.6997</span>
<span class="nt">Epoch</span><span class="na"> 14000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8414082000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6333.199</span><span class="err"> </span><span class="nc">5147.394</span><span class="err"> </span><span class="nc">3943.9294</span>
<span class="nt">Epoch</span><span class="na"> 15000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8378841600.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6370.7944</span><span class="err"> </span><span class="nc">4977.1704</span><span class="err"> </span><span class="nc">3532.476</span>
<span class="nt">Epoch</span><span class="na"> 16000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8344471000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6404.468</span><span class="err"> </span><span class="nc">4803.542</span><span class="err"> </span><span class="nc">3120.2087</span>
<span class="nt">Epoch</span><span class="na"> 17000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8310785500.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6435.365</span><span class="err"> </span><span class="nc">4628.1523</span><span class="err"> </span><span class="nc">2709.1445</span>
<span class="nt">Epoch</span><span class="na"> 18000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8277482000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6465.5493</span><span class="err"> </span><span class="nc">4451.833</span><span class="err"> </span><span class="nc">2300.2783</span>
<span class="nt">Epoch</span><span class="na"> 19000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8244650000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6494.609</span><span class="err"> </span><span class="nc">4274.826</span><span class="err"> </span><span class="nc">1894.3738</span>
<span class="nt">Epoch</span><span class="na"> 20000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8212349000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6522.8247</span><span class="err"> </span><span class="nc">4098.1733</span><span class="err"> </span><span class="nc">1491.9915</span>
<span class="nt">Epoch</span><span class="na"> 21000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8180598300.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6550.6567</span><span class="err"> </span><span class="nc">3922.7405</span><span class="err"> </span><span class="nc">1093.3868</span>
<span class="nt">Epoch</span><span class="na"> 22000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8149257700.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6578.489</span><span class="err"> </span><span class="nc">3747.8362</span><span class="err"> </span><span class="nc">698.53357</span>
<span class="nt">Epoch</span><span class="na"> 23000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8118325000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6606.1973</span><span class="err"> </span><span class="nc">3573.2742</span><span class="err"> </span><span class="nc">307.3541</span>
<span class="nt">Epoch</span><span class="na"> 24000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8088001000.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6632.96</span><span class="err"> </span><span class="nc">3399.878</span><span class="err"> </span><span class="nc">-79.89219</span>
<span class="nt">Epoch</span><span class="na"> 25000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">8058094600.0</span><span class="err"> </span><span class="nc">a,b,c</span><span class="p">:</span><span class="err"> </span><span class="nc">6659.793</span><span class="err"> </span><span class="nc">3227.2517</span><span class="err"> </span><span class="nc">-463.03156</span>
<span class="nt">8058094600.0</span><span class="na"> 6659.793 3227.2517 -463.03156</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">abscissa</span><span class="p">:</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">coefficient1</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient2</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">constant</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span> <span class="p">,</span> <span class="n">ordinate</span><span class="p">,</span> <span class="s1">'ro'</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Original data'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Fitted line'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Quadratic Regression Result'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="/assets/gciTales/03-regression/3.png"/><h3>Cubic</h3><pre><code><div class="highlight"><span></span><span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span> <span class="k">as</span> <span class="n">sess</span><span class="p">:</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">init</span><span class="p">)</span>
<span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">no_of_epochs</span><span class="p">):</span>
<span class="k">for</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">optimizer3</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">x</span><span class="p">,</span> <span class="n">Y</span><span class="p">:</span><span class="n">y</span><span class="p">})</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">%</span><span class="mi">1000</span><span class="o">==</span><span class="mi">0</span><span class="p">:</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse3</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Epoch"</span><span class="p">,(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span> <span class="s2">": Training Cost:"</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span><span class="s2">" a,b,c,d:"</span><span class="p">,</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">))</span>
<span class="n">training_cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse3</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="n">coefficient1</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">coefficient2</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
<span class="n">coefficient3</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="n">constant</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">training_cost</span><span class="p">,</span> <span class="n">coefficient1</span><span class="p">,</span> <span class="n">coefficient2</span><span class="p">,</span> <span class="n">coefficient3</span><span class="p">,</span> <span class="n">constant</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="nt">Epoch</span><span class="na"> 1000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">4279814000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">670.1527</span><span class="err"> </span><span class="nc">694.4212</span><span class="err"> </span><span class="nc">751.4653</span><span class="err"> </span><span class="nc">903.9527</span>
<span class="nt">Epoch</span><span class="na"> 2000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3770950400.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">742.6414</span><span class="err"> </span><span class="nc">666.3489</span><span class="err"> </span><span class="nc">636.94525</span><span class="err"> </span><span class="nc">859.2088</span>
<span class="nt">Epoch</span><span class="na"> 3000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3717708300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">756.2582</span><span class="err"> </span><span class="nc">569.3339</span><span class="err"> </span><span class="nc">448.105</span><span class="err"> </span><span class="nc">748.23956</span>
<span class="nt">Epoch</span><span class="na"> 4000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3667464000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">769.4476</span><span class="err"> </span><span class="nc">474.0318</span><span class="err"> </span><span class="nc">265.5761</span><span class="err"> </span><span class="nc">654.75525</span>
<span class="nt">Epoch</span><span class="na"> 5000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3620040700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">782.32324</span><span class="err"> </span><span class="nc">380.54272</span><span class="err"> </span><span class="nc">89.39888</span><span class="err"> </span><span class="nc">578.5136</span>
<span class="nt">Epoch</span><span class="na"> 6000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3575265800.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">794.8898</span><span class="err"> </span><span class="nc">288.83356</span><span class="err"> </span><span class="nc">-80.5215</span><span class="err"> </span><span class="nc">519.13654</span>
<span class="nt">Epoch</span><span class="na"> 7000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3532972000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">807.1608</span><span class="err"> </span><span class="nc">198.87044</span><span class="err"> </span><span class="nc">-244.31102</span><span class="err"> </span><span class="nc">476.2061</span>
<span class="nt">Epoch</span><span class="na"> 8000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3493009200.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">819.13513</span><span class="err"> </span><span class="nc">110.64169</span><span class="err"> </span><span class="nc">-402.0677</span><span class="err"> </span><span class="nc">449.3291</span>
<span class="nt">Epoch</span><span class="na"> 9000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3455228400.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">830.80255</span><span class="err"> </span><span class="nc">24.0964</span><span class="err"> </span><span class="nc">-553.92804</span><span class="err"> </span><span class="nc">438.0652</span>
<span class="nt">Epoch</span><span class="na"> 10000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3419475500.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">842.21594</span><span class="err"> </span><span class="nc">-60.797424</span><span class="err"> </span><span class="nc">-700.0123</span><span class="err"> </span><span class="nc">441.983</span>
<span class="nt">Epoch</span><span class="na"> 11000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3385625300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">853.3363</span><span class="err"> </span><span class="nc">-144.08699</span><span class="err"> </span><span class="nc">-840.467</span><span class="err"> </span><span class="nc">460.6356</span>
<span class="nt">Epoch</span><span class="na"> 12000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3353544700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">864.19135</span><span class="err"> </span><span class="nc">-225.8125</span><span class="err"> </span><span class="nc">-975.4196</span><span class="err"> </span><span class="nc">493.57703</span>
<span class="nt">Epoch</span><span class="na"> 13000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3323125000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">874.778</span><span class="err"> </span><span class="nc">-305.98932</span><span class="err"> </span><span class="nc">-1104.9867</span><span class="err"> </span><span class="nc">540.39465</span>
<span class="nt">Epoch</span><span class="na"> 14000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3294257000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">885.1007</span><span class="err"> </span><span class="nc">-384.63474</span><span class="err"> </span><span class="nc">-1229.277</span><span class="err"> </span><span class="nc">600.65607</span>
<span class="nt">Epoch</span><span class="na"> 15000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3266820000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">895.18823</span><span class="err"> </span><span class="nc">-461.819</span><span class="err"> </span><span class="nc">-1348.4417</span><span class="err"> </span><span class="nc">673.9051</span>
<span class="nt">Epoch</span><span class="na"> 16000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3240736000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">905.0128</span><span class="err"> </span><span class="nc">-537.541</span><span class="err"> </span><span class="nc">-1462.6171</span><span class="err"> </span><span class="nc">759.7118</span>
<span class="nt">Epoch</span><span class="na"> 17000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3215895000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">914.60065</span><span class="err"> </span><span class="nc">-611.8676</span><span class="err"> </span><span class="nc">-1571.9058</span><span class="err"> </span><span class="nc">857.6638</span>
<span class="nt">Epoch</span><span class="na"> 18000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3192216800.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">923.9603</span><span class="err"> </span><span class="nc">-684.8093</span><span class="err"> </span><span class="nc">-1676.4642</span><span class="err"> </span><span class="nc">967.30475</span>
<span class="nt">Epoch</span><span class="na"> 19000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3169632300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">933.08594</span><span class="err"> </span><span class="nc">-756.3582</span><span class="err"> </span><span class="nc">-1776.4275</span><span class="err"> </span><span class="nc">1088.2198</span>
<span class="nt">Epoch</span><span class="na"> 20000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3148046300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">941.9928</span><span class="err"> </span><span class="nc">-826.6257</span><span class="err"> </span><span class="nc">-1871.9355</span><span class="err"> </span><span class="nc">1219.9702</span>
<span class="nt">Epoch</span><span class="na"> 21000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3127394800.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">950.67896</span><span class="err"> </span><span class="nc">-895.6205</span><span class="err"> </span><span class="nc">-1963.0989</span><span class="err"> </span><span class="nc">1362.1665</span>
<span class="nt">Epoch</span><span class="na"> 22000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3107608600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">959.1487</span><span class="err"> </span><span class="nc">-963.38116</span><span class="err"> </span><span class="nc">-2050.0586</span><span class="err"> </span><span class="nc">1514.4026</span>
<span class="nt">Epoch</span><span class="na"> 23000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3088618200.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">967.4355</span><span class="err"> </span><span class="nc">-1029.9625</span><span class="err"> </span><span class="nc">-2132.961</span><span class="err"> </span><span class="nc">1676.2717</span>
<span class="nt">Epoch</span><span class="na"> 24000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3070361300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">975.52875</span><span class="err"> </span><span class="nc">-1095.4292</span><span class="err"> </span><span class="nc">-2211.854</span><span class="err"> </span><span class="nc">1847.4485</span>
<span class="nt">Epoch</span><span class="na"> 25000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">3052791300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">983.4346</span><span class="err"> </span><span class="nc">-1159.7922</span><span class="err"> </span><span class="nc">-2286.9412</span><span class="err"> </span><span class="nc">2027.4857</span>
<span class="nt">3052791300.0</span><span class="na"> 983.4346 -1159.7922 -2286.9412 2027.4857</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">abscissa</span><span class="p">:</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">coefficient1</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient2</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient3</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">constant</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span> <span class="p">,</span> <span class="n">ordinate</span><span class="p">,</span> <span class="s1">'ro'</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Original data'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Fitted line'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Cubic Regression Result'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="/assets/gciTales/03-regression/4.png"/><h3>Quartic</h3><pre><code><div class="highlight"><span></span><span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span> <span class="k">as</span> <span class="n">sess</span><span class="p">:</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">init</span><span class="p">)</span>
<span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">no_of_epochs</span><span class="p">):</span>
<span class="k">for</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">optimizer4</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">x</span><span class="p">,</span> <span class="n">Y</span><span class="p">:</span><span class="n">y</span><span class="p">})</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">%</span><span class="mi">1000</span><span class="o">==</span><span class="mi">0</span><span class="p">:</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse4</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Epoch"</span><span class="p">,(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span> <span class="s2">": Training Cost:"</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span><span class="s2">" a,b,c,d:"</span><span class="p">,</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">e</span><span class="p">))</span>
<span class="n">training_cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse4</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="n">coefficient1</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">coefficient2</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
<span class="n">coefficient3</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="n">coefficient4</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">)</span>
<span class="n">constant</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">training_cost</span><span class="p">,</span> <span class="n">coefficient1</span><span class="p">,</span> <span class="n">coefficient2</span><span class="p">,</span> <span class="n">coefficient3</span><span class="p">,</span> <span class="n">coefficient4</span><span class="p">,</span> <span class="n">constant</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="nt">Epoch</span><span class="na"> 1000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1902632600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">84.48304</span><span class="err"> </span><span class="nc">52.210594</span><span class="err"> </span><span class="nc">54.791424</span><span class="err"> </span><span class="nc">142.51952</span><span class="err"> </span><span class="nc">512.0343</span>
<span class="nt">Epoch</span><span class="na"> 2000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1854316200.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">88.998955</span><span class="err"> </span><span class="nc">13.073557</span><span class="err"> </span><span class="nc">14.276088</span><span class="err"> </span><span class="nc">223.55667</span><span class="err"> </span><span class="nc">1056.4655</span>
<span class="nt">Epoch</span><span class="na"> 3000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1812812400.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">92.9462</span><span class="err"> </span><span class="nc">-22.331177</span><span class="err"> </span><span class="nc">-15.262934</span><span class="err"> </span><span class="nc">327.41858</span><span class="err"> </span><span class="nc">1634.9054</span>
<span class="nt">Epoch</span><span class="na"> 4000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1775716000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">96.42522</span><span class="err"> </span><span class="nc">-54.64535</span><span class="err"> </span><span class="nc">-35.829437</span><span class="err"> </span><span class="nc">449.5028</span><span class="err"> </span><span class="nc">2239.1392</span>
<span class="nt">Epoch</span><span class="na"> 5000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1741494100.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">99.524734</span><span class="err"> </span><span class="nc">-84.43976</span><span class="err"> </span><span class="nc">-49.181057</span><span class="err"> </span><span class="nc">585.85876</span><span class="err"> </span><span class="nc">2862.4915</span>
<span class="nt">Epoch</span><span class="na"> 6000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1709199600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">102.31984</span><span class="err"> </span><span class="nc">-112.19895</span><span class="err"> </span><span class="nc">-56.808075</span><span class="err"> </span><span class="nc">733.1876</span><span class="err"> </span><span class="nc">3499.6199</span>
<span class="nt">Epoch</span><span class="na"> 7000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1678261800.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">104.87324</span><span class="err"> </span><span class="nc">-138.32709</span><span class="err"> </span><span class="nc">-59.9442</span><span class="err"> </span><span class="nc">888.79626</span><span class="err"> </span><span class="nc">4146.2944</span>
<span class="nt">Epoch</span><span class="na"> 8000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1648340600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">107.23536</span><span class="err"> </span><span class="nc">-163.15173</span><span class="err"> </span><span class="nc">-59.58964</span><span class="err"> </span><span class="nc">1050.524</span><span class="err"> </span><span class="nc">4798.979</span>
<span class="nt">Epoch</span><span class="na"> 9000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1619243400.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">109.44742</span><span class="err"> </span><span class="nc">-186.9409</span><span class="err"> </span><span class="nc">-56.53944</span><span class="err"> </span><span class="nc">1216.6432</span><span class="err"> </span><span class="nc">5454.9463</span>
<span class="nt">Epoch</span><span class="na"> 10000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1590821900.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">111.54233</span><span class="err"> </span><span class="nc">-209.91287</span><span class="err"> </span><span class="nc">-51.423084</span><span class="err"> </span><span class="nc">1385.8513</span><span class="err"> </span><span class="nc">6113.5137</span>
<span class="nt">Epoch</span><span class="na"> 11000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1563042200.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">113.54405</span><span class="err"> </span><span class="nc">-232.21953</span><span class="err"> </span><span class="nc">-44.73371</span><span class="err"> </span><span class="nc">1557.1084</span><span class="err"> </span><span class="nc">6771.7046</span>
<span class="nt">Epoch</span><span class="na"> 12000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1535855600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">115.471565</span><span class="err"> </span><span class="nc">-253.9838</span><span class="err"> </span><span class="nc">-36.851135</span><span class="err"> </span><span class="nc">1729.535</span><span class="err"> </span><span class="nc">7429.069</span>
<span class="nt">Epoch</span><span class="na"> 13000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1509255300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">117.33939</span><span class="err"> </span><span class="nc">-275.29697</span><span class="err"> </span><span class="nc">-28.0714</span><span class="err"> </span><span class="nc">1902.5308</span><span class="err"> </span><span class="nc">8083.9634</span>
<span class="nt">Epoch</span><span class="na"> 14000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1483227000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">119.1605</span><span class="err"> </span><span class="nc">-296.2472</span><span class="err"> </span><span class="nc">-18.618649</span><span class="err"> </span><span class="nc">2075.6094</span><span class="err"> </span><span class="nc">8735.381</span>
<span class="nt">Epoch</span><span class="na"> 15000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1457726700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">120.94584</span><span class="err"> </span><span class="nc">-316.915</span><span class="err"> </span><span class="nc">-8.650095</span><span class="err"> </span><span class="nc">2248.3247</span><span class="err"> </span><span class="nc">9384.197</span>
<span class="nt">Epoch</span><span class="na"> 16000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1432777300.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">122.69806</span><span class="err"> </span><span class="nc">-337.30704</span><span class="err"> </span><span class="nc">1.7027153</span><span class="err"> </span><span class="nc">2420.5771</span><span class="err"> </span><span class="nc">10028.871</span>
<span class="nt">Epoch</span><span class="na"> 17000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1408365000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">124.42179</span><span class="err"> </span><span class="nc">-357.45245</span><span class="err"> </span><span class="nc">12.33499</span><span class="err"> </span><span class="nc">2592.2983</span><span class="err"> </span><span class="nc">10669.157</span>
<span class="nt">Epoch</span><span class="na"> 18000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1384480000.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">126.12332</span><span class="err"> </span><span class="nc">-377.39734</span><span class="err"> </span><span class="nc">23.168756</span><span class="err"> </span><span class="nc">2763.0933</span><span class="err"> </span><span class="nc">11305.027</span>
<span class="nt">Epoch</span><span class="na"> 19000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1361116800.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">127.80568</span><span class="err"> </span><span class="nc">-397.16415</span><span class="err"> </span><span class="nc">34.160156</span><span class="err"> </span><span class="nc">2933.0452</span><span class="err"> </span><span class="nc">11935.669</span>
<span class="nt">Epoch</span><span class="na"> 20000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1338288100.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">129.4674</span><span class="err"> </span><span class="nc">-416.72803</span><span class="err"> </span><span class="nc">45.259155</span><span class="err"> </span><span class="nc">3101.7727</span><span class="err"> </span><span class="nc">12561.179</span>
<span class="nt">Epoch</span><span class="na"> 21000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1315959700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">131.11403</span><span class="err"> </span><span class="nc">-436.14285</span><span class="err"> </span><span class="nc">56.4436</span><span class="err"> </span><span class="nc">3269.3142</span><span class="err"> </span><span class="nc">13182.058</span>
<span class="nt">Epoch</span><span class="na"> 22000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1294164700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">132.74377</span><span class="err"> </span><span class="nc">-455.3779</span><span class="err"> </span><span class="nc">67.6757</span><span class="err"> </span><span class="nc">3435.3833</span><span class="err"> </span><span class="nc">13796.807</span>
<span class="nt">Epoch</span><span class="na"> 23000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1272863600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">134.35779</span><span class="err"> </span><span class="nc">-474.45316</span><span class="err"> </span><span class="nc">78.96117</span><span class="err"> </span><span class="nc">3600.264</span><span class="err"> </span><span class="nc">14406.58</span>
<span class="nt">Epoch</span><span class="na"> 24000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1252052600.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">135.9583</span><span class="err"> </span><span class="nc">-493.38254</span><span class="err"> </span><span class="nc">90.268616</span><span class="err"> </span><span class="nc">3764.0078</span><span class="err"> </span><span class="nc">15010.481</span>
<span class="nt">Epoch</span><span class="na"> 25000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1231713700.0</span><span class="err"> </span><span class="nc">a,b,c,d</span><span class="p">:</span><span class="err"> </span><span class="nc">137.54753</span><span class="err"> </span><span class="nc">-512.1876</span><span class="err"> </span><span class="nc">101.59372</span><span class="err"> </span><span class="nc">3926.4897</span><span class="err"> </span><span class="nc">15609.368</span>
<span class="nt">1231713700.0</span><span class="na"> 137.54753 -512.1876 101.59372 3926.4897 15609.368</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">abscissa</span><span class="p">:</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">coefficient1</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient2</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient3</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient4</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">constant</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span> <span class="p">,</span> <span class="n">ordinate</span><span class="p">,</span> <span class="s1">'ro'</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Original data'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Fitted line'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Quartic Regression Result'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="/assets/gciTales/03-regression/5.png"/><h3>Quintic</h3><pre><code><div class="highlight"><span></span><span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span> <span class="k">as</span> <span class="n">sess</span><span class="p">:</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">init</span><span class="p">)</span>
<span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">no_of_epochs</span><span class="p">):</span>
<span class="k">for</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">ordinate</span><span class="p">):</span>
<span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">optimizer5</span><span class="p">,</span> <span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">x</span><span class="p">,</span> <span class="n">Y</span><span class="p">:</span><span class="n">y</span><span class="p">})</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">%</span><span class="mi">1000</span><span class="o">==</span><span class="mi">0</span><span class="p">:</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse5</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Epoch"</span><span class="p">,(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">),</span> <span class="s2">": Training Cost:"</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span><span class="s2">" a,b,c,d,e,f:"</span><span class="p">,</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">e</span><span class="p">),</span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">f</span><span class="p">))</span>
<span class="n">training_cost</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">mse5</span><span class="p">,</span><span class="n">feed_dict</span><span class="o">=</span><span class="p">{</span><span class="n">X</span><span class="p">:</span><span class="n">abscissa</span><span class="p">,</span><span class="n">Y</span><span class="p">:</span><span class="n">ordinate</span><span class="p">})</span>
<span class="n">coefficient1</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">coefficient2</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
<span class="n">coefficient3</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="n">coefficient4</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">d</span><span class="p">)</span>
<span class="n">coefficient5</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
<span class="n">constant</span> <span class="o">=</span> <span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="nt">Epoch</span><span class="na"> 1000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1409200100.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">7.949472</span><span class="err"> </span><span class="nc">7.46219</span><span class="err"> </span><span class="nc">55.626034</span><span class="err"> </span><span class="nc">184.29028</span><span class="err"> </span><span class="nc">484.00223</span><span class="err"> </span><span class="nc">1024.0083</span>
<span class="nt">Epoch</span><span class="na"> 2000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1306882400.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">8.732181</span><span class="err"> </span><span class="nc">-4.0085897</span><span class="err"> </span><span class="nc">73.25298</span><span class="err"> </span><span class="nc">315.90103</span><span class="err"> </span><span class="nc">904.08887</span><span class="err"> </span><span class="nc">2004.9749</span>
<span class="nt">Epoch</span><span class="na"> 3000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1212606000.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">9.732249</span><span class="err"> </span><span class="nc">-16.90125</span><span class="err"> </span><span class="nc">86.28379</span><span class="err"> </span><span class="nc">437.06552</span><span class="err"> </span><span class="nc">1305.055</span><span class="err"> </span><span class="nc">2966.2188</span>
<span class="nt">Epoch</span><span class="na"> 4000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1123640400.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">10.74851</span><span class="err"> </span><span class="nc">-29.82692</span><span class="err"> </span><span class="nc">98.59997</span><span class="err"> </span><span class="nc">555.331</span><span class="err"> </span><span class="nc">1698.4631</span><span class="err"> </span><span class="nc">3917.9155</span>
<span class="nt">Epoch</span><span class="na"> 5000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">1039694300.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">11.75426</span><span class="err"> </span><span class="nc">-42.598194</span><span class="err"> </span><span class="nc">110.698326</span><span class="err"> </span><span class="nc">671.64355</span><span class="err"> </span><span class="nc">2085.5513</span><span class="err"> </span><span class="nc">4860.8535</span>
<span class="nt">Epoch</span><span class="na"> 6000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">960663550.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">12.745439</span><span class="err"> </span><span class="nc">-55.18337</span><span class="err"> </span><span class="nc">122.644936</span><span class="err"> </span><span class="nc">786.00214</span><span class="err"> </span><span class="nc">2466.1638</span><span class="err"> </span><span class="nc">5794.3735</span>
<span class="nt">Epoch</span><span class="na"> 7000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">886438340.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">13.721028</span><span class="err"> </span><span class="nc">-67.57168</span><span class="err"> </span><span class="nc">134.43822</span><span class="err"> </span><span class="nc">898.3691</span><span class="err"> </span><span class="nc">2839.9958</span><span class="err"> </span><span class="nc">6717.659</span>
<span class="nt">Epoch</span><span class="na"> 8000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">816913100.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">14.679965</span><span class="err"> </span><span class="nc">-79.75113</span><span class="err"> </span><span class="nc">146.07385</span><span class="err"> </span><span class="nc">1008.66895</span><span class="err"> </span><span class="nc">3206.6692</span><span class="err"> </span><span class="nc">7629.812</span>
<span class="nt">Epoch</span><span class="na"> 9000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">751971500.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">15.62181</span><span class="err"> </span><span class="nc">-91.71608</span><span class="err"> </span><span class="nc">157.55713</span><span class="err"> </span><span class="nc">1116.7715</span><span class="err"> </span><span class="nc">3565.8323</span><span class="err"> </span><span class="nc">8529.976</span>
<span class="nt">Epoch</span><span class="na"> 10000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">691508740.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">16.545347</span><span class="err"> </span><span class="nc">-103.4531</span><span class="err"> </span><span class="nc">168.88321</span><span class="err"> </span><span class="nc">1222.6348</span><span class="err"> </span><span class="nc">3916.9785</span><span class="err"> </span><span class="nc">9416.236</span>
<span class="nt">Epoch</span><span class="na"> 11000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">635382000.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">17.450052</span><span class="err"> </span><span class="nc">-114.954254</span><span class="err"> </span><span class="nc">180.03932</span><span class="err"> </span><span class="nc">1326.1565</span><span class="err"> </span><span class="nc">4259.842</span><span class="err"> </span><span class="nc">10287.99</span>
<span class="nt">Epoch</span><span class="na"> 12000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">583477250.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">18.334944</span><span class="err"> </span><span class="nc">-126.20821</span><span class="err"> </span><span class="nc">191.02948</span><span class="err"> </span><span class="nc">1427.2095</span><span class="err"> </span><span class="nc">4593.8</span><span class="err"> </span><span class="nc">11143.449</span>
<span class="nt">Epoch</span><span class="na"> 13000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">535640400.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">19.198917</span><span class="err"> </span><span class="nc">-137.20206</span><span class="err"> </span><span class="nc">201.84718</span><span class="err"> </span><span class="nc">1525.6926</span><span class="err"> </span><span class="nc">4918.5327</span><span class="err"> </span><span class="nc">11981.633</span>
<span class="nt">Epoch</span><span class="na"> 14000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">491722240.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">20.041153</span><span class="err"> </span><span class="nc">-147.92719</span><span class="err"> </span><span class="nc">212.49709</span><span class="err"> </span><span class="nc">1621.5496</span><span class="err"> </span><span class="nc">5233.627</span><span class="err"> </span><span class="nc">12800.468</span>
<span class="nt">Epoch</span><span class="na"> 15000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">451559520.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">20.860966</span><span class="err"> </span><span class="nc">-158.37456</span><span class="err"> </span><span class="nc">222.97133</span><span class="err"> </span><span class="nc">1714.7141</span><span class="err"> </span><span class="nc">5538.676</span><span class="err"> </span><span class="nc">13598.337</span>
<span class="nt">Epoch</span><span class="na"> 16000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">414988960.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">21.657421</span><span class="err"> </span><span class="nc">-168.53406</span><span class="err"> </span><span class="nc">233.27422</span><span class="err"> </span><span class="nc">1805.0874</span><span class="err"> </span><span class="nc">5833.1978</span><span class="err"> </span><span class="nc">14373.658</span>
<span class="nt">Epoch</span><span class="na"> 17000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">381837920.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">22.429693</span><span class="err"> </span><span class="nc">-178.39536</span><span class="err"> </span><span class="nc">243.39914</span><span class="err"> </span><span class="nc">1892.5883</span><span class="err"> </span><span class="nc">6116.847</span><span class="err"> </span><span class="nc">15124.394</span>
<span class="nt">Epoch</span><span class="na"> 18000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">351931300.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">23.176882</span><span class="err"> </span><span class="nc">-187.94789</span><span class="err"> </span><span class="nc">253.3445</span><span class="err"> </span><span class="nc">1977.137</span><span class="err"> </span><span class="nc">6389.117</span><span class="err"> </span><span class="nc">15848.417</span>
<span class="nt">Epoch</span><span class="na"> 19000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">325074400.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">23.898485</span><span class="err"> </span><span class="nc">-197.18741</span><span class="err"> </span><span class="nc">263.12512</span><span class="err"> </span><span class="nc">2058.6716</span><span class="err"> </span><span class="nc">6649.8037</span><span class="err"> </span><span class="nc">16543.95</span>
<span class="nt">Epoch</span><span class="na"> 20000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">301073570.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">24.593851</span><span class="err"> </span><span class="nc">-206.10497</span><span class="err"> </span><span class="nc">272.72385</span><span class="err"> </span><span class="nc">2137.1797</span><span class="err"> </span><span class="nc">6898.544</span><span class="err"> </span><span class="nc">17209.367</span>
<span class="nt">Epoch</span><span class="na"> 21000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">279727000.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">25.262104</span><span class="err"> </span><span class="nc">-214.69217</span><span class="err"> </span><span class="nc">282.14642</span><span class="err"> </span><span class="nc">2212.6372</span><span class="err"> </span><span class="nc">7135.217</span><span class="err"> </span><span class="nc">17842.854</span>
<span class="nt">Epoch</span><span class="na"> 22000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">260845550.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">25.903376</span><span class="err"> </span><span class="nc">-222.94969</span><span class="err"> </span><span class="nc">291.4003</span><span class="err"> </span><span class="nc">2284.9844</span><span class="err"> </span><span class="nc">7359.4644</span><span class="err"> </span><span class="nc">18442.408</span>
<span class="nt">Epoch</span><span class="na"> 23000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">244218030.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">26.517094</span><span class="err"> </span><span class="nc">-230.8697</span><span class="err"> </span><span class="nc">300.45532</span><span class="err"> </span><span class="nc">2354.3003</span><span class="err"> </span><span class="nc">7571.261</span><span class="err"> </span><span class="nc">19007.49</span>
<span class="nt">Epoch</span><span class="na"> 24000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">229660080.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">27.102589</span><span class="err"> </span><span class="nc">-238.44817</span><span class="err"> </span><span class="nc">309.35342</span><span class="err"> </span><span class="nc">2420.4185</span><span class="err"> </span><span class="nc">7770.5728</span><span class="err"> </span><span class="nc">19536.19</span>
<span class="nt">Epoch</span><span class="na"> 25000 </span><span class="p">:</span><span class="err"> </span><span class="nc">Training</span><span class="err"> </span><span class="nc">Cost</span><span class="p">:</span><span class="err"> </span><span class="nc">216972400.0</span><span class="err"> </span><span class="nc">a,b,c,d,e,f</span><span class="p">:</span><span class="err"> </span><span class="nc">27.660324</span><span class="err"> </span><span class="nc">-245.69016</span><span class="err"> </span><span class="nc">318.10062</span><span class="err"> </span><span class="nc">2483.3608</span><span class="err"> </span><span class="nc">7957.354</span><span class="err"> </span><span class="nc">20027.707</span>
<span class="nt">216972400.0</span><span class="na"> 27.660324 -245.69016 318.10062 2483.3608 7957.354 20027.707</span>
</div></code></pre><pre><code><div class="highlight"><span></span><span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">abscissa</span><span class="p">:</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">coefficient1</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">5</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient2</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient3</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient4</span><span class="o">*</span><span class="nb">pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">coefficient5</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">constant</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span> <span class="p">,</span> <span class="n">ordinate</span><span class="p">,</span> <span class="s1">'ro'</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Original data'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">abscissa</span><span class="p">,</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span><span class="s1">'Fitted line'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Quintic Regression Result'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</div></code></pre><img src="/assets/gciTales/03-regression/6.png"/><h2>Results and Conclusion</h2><p>You just learnt Polynomial Regression using TensorFlow!</p><h2>Notes</h2><h3>Overfitting</h3><blockquote><p>> Overfitting refers to a model that models the training data too well.Overfitting happens when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data. This means that the noise or random fluctuations in the training data is picked up and learned as concepts by the model. The problem is that these concepts do not apply to new data and negatively impact the models ability to generalise.</p></blockquote><blockquote><p>Source: Machine Learning Mastery</p></blockquote><p>Basically if you train your machine learning model on a small dataset for a really large number of epochs, the model will learn all the deformities/noise in the data and will actually think that it is a normal part. Therefore when it will see some new data, it will discard that new data as noise and will impact the accuracy of the model in a negative manner</p></div><span>Tagged with: </span><ul class="tag-list"><li><a href="/tags/tutorial">Tutorial</a></li><li><a href="/tags/tensorflow">Tensorflow</a></li><li><a href="/tags/colab">Colab</a></li></ul></article></div><footer><p>Made with ❤️ using <a href="https://github.com/johnsundell/publish">Publish</a></p><p><a href="/feed.rss">RSS feed</a></p></footer></body></html>
|