aboutsummaryrefslogtreecommitdiff
path: root/lang_prompt_demo.py
diff options
context:
space:
mode:
authorNavan Chauhan <navanchauhan@gmail.com>2023-10-14 14:47:49 -0600
committerNavan Chauhan <navanchauhan@gmail.com>2023-10-14 14:47:49 -0600
commit42e54a2cb29943b793bf9a47dd7e0121e1c0c87d (patch)
treed5570585dc0bfccdab3ec3f9aaa79a9e4290470e /lang_prompt_demo.py
parent704b6407b4e51800376e73fe934a762e94b30d9d (diff)
Diffstat (limited to 'lang_prompt_demo.py')
-rw-r--r--lang_prompt_demo.py60
1 files changed, 51 insertions, 9 deletions
diff --git a/lang_prompt_demo.py b/lang_prompt_demo.py
index 3d8f1cd..cde0a59 100644
--- a/lang_prompt_demo.py
+++ b/lang_prompt_demo.py
@@ -5,6 +5,7 @@ from dotenv import load_dotenv
from tools.contacts import get_all_contacts
from tools.vocode import call_phone_number
+from tools.summarize import summarize
from tools.get_user_inputs import get_desired_inputs
from tools.email_tool import email_tasks
from langchain.memory import ConversationBufferMemory
@@ -15,30 +16,71 @@ from stdout_filterer import RedactPhoneNumbers
load_dotenv()
from langchain.chat_models import ChatOpenAI
-from langchain.chat_models import BedrockChat
+# from langchain.chat_models import BedrockChat
from langchain.agents import initialize_agent
from langchain.agents import AgentType
+from langchain.tools import WikipediaQueryRun
+
+import argparse
+
+memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
+tools=load_tools(["human", "wikipedia"]) + [get_all_contacts, call_phone_number, email_tasks, summarize]
+
+tools_desc = ""
+for tool in tools:
+ tools_desc += tool.name + " : " + tool.description + "\n"
+
+def rephrase_prompt(objective: str) -> str:
+ # llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") # type: ignore
+ # pred = llm.predict(f"Based on these tools {tools_desc} with the {objective} should be done in the following manner (outputting a single sentence), allowing for failure: ")
+ # print(pred)
+ # return pred
+ return f"{objective}"
+
+with open("info.txt") as f:
+ my_info = f.read()
+ memory.chat_memory.add_user_message("User information to us " + my_info + " end of user information.")
+
if __name__ == "__main__":
+ parser = argparse.ArgumentParser(description="Command line argument parser example")
+
+ parser.add_argument("--objective", type=str, help="Objective for the program")
+ parser.add_argument("--verbose", type=bool, help="Verbosity of the program", default=False)
+
+ # Parse the arguments
+ args = parser.parse_args()
+
+ # Get the value of --objective
+ objective_value = args.objective
+
+ # Get the value of --verbose
+ verbose_value = args.verbose
+
# Redirect stdout to our custom class
sys.stdout = typing.cast(typing.TextIO, RedactPhoneNumbers(sys.stdout))
+ if objective_value is None:
+ objective_value = input("What is your objective? ")
+
OBJECTIVE = (
- input("Objective: ")
- + "make sure you use the proper tool before calling final action to meet objective, feel free to say you need more information or cannot do something."
+ objective_value
or "Find a random person in my contacts and tell them a joke"
)
- #llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") # type: ignore
- llm = BedrockChat(model_id="anthropic.claude-instant-v1", model_kwargs={"temperature":0}) # type: ignore
- memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
+ llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") # type: ignore
+ #llm = BedrockChat(model_id="anthropic.claude-instant-v1", model_kwargs={"temperature":0}) # type: ignore
+ #memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# Logging of LLMChains
verbose = True
agent = initialize_agent(
- tools=[get_all_contacts, call_phone_number, email_tasks] + load_tools(["serpapi", "human"]),
+ tools=tools,
llm=llm,
agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
- verbose=verbose,
+ verbose=verbose_value,
memory=memory,
)
- agent.run(OBJECTIVE)
+ out = agent.run(OBJECTIVE)
+ print(out)
+
+