1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
from flask import Flask, render_template, request, url_for
from database import *
import pandas as pd
from fuzzywuzzy import process, fuzz
import os
import pinecone
PINECONE_KEY = os.getenv("PINECONE_API_DEFAULT")
database_url = "sqlite:///jlm.db"
engine, Session = init_db_stuff(database_url)
df = pd.read_sql("Select * from movies", engine)
movie_titles = df["title"].tolist()
pinecone.init(api_key=PINECONE_KEY, environment="us-west1-gcp")
index = pinecone.Index("movies")
app = Flask(__name__, template_folder="./templates")
def title2trakt_id(title: str, df=df):
#Matches Exact Title, Otherwise Returns None
records = df[df["title"].str.lower() == title.lower()]
if len(records) == 0:
return 0, None
elif len(records) == 1:
return 1, records.trakt_id.tolist()[0]
else:
return 2, records.trakt_id.tolist()
def get_vector_value(trakt_id: int):
fetch_response = index.fetch(ids=[str(trakt_id)])
return fetch_response["vectors"][str(trakt_id)]["values"]
def query_vectors(vector: list, top_k: int = 20, include_values: bool = False, include_metada: bool = True):
query_response = index.query(
queries=[
(vector),
],
top_k=top_k,
include_values=include_values,
include_metadata=include_metada
)
return query_response
def query2ids(query_response):
trakt_ids = []
for match in query_response["results"][0]["matches"]:
trakt_ids.append(int(match["id"]))
return trakt_ids
def get_deets_by_trakt_id(df, trakt_id: int):
df = df[df["trakt_id"]==trakt_id]
return {
"title": df.title.values[0],
"overview": df.overview.values[0],
"runtime": int(df.runtime.values[0]),
"year": int(df.year.values[0]),
"trakt_id": trakt_id,
"tagline": df.tagline.values[0]
}
@app.route("/similar")
def get_similar_titles():
trakt_id = request.args.get("trakt_id")
filterin = request.args.get("filter")
min_year = request.args.get("minYear")
if min_year == None:
min_year = 1900
else:
try:
min_year = int(min_year)
except TypeError:
min_year = 1900
max_year = request.args.get("maxYear")
if max_year == None:
max_year = 2021
else:
try:
max_year = int(max_year)
except TypeError:
max_year = 2021
minRuntime = request.args.get("minRuntime")
if minRuntime == None:
minRuntime = 70
else:
try:
minRuntime = int(minRuntime)
except TypeError:
minRuntime = 70
maxRuntime = request.args.get("maxRuntime")
if maxRuntime == None:
maxRuntime = 220
else:
try:
maxRuntime = int(maxRuntime)
except TypeError:
maxRuntime = 220
vector = get_vector_value(trakt_id)
movie_queries = query_vectors(vector, top_k = 69)
movie_ids = query2ids(movie_queries)
results = []
#for trakt_id in movie_ids:
# deets = get_deets_by_trakt_id(df, trakt_id)
# results.append(deets)
max_res = 30
cur_res = 0
for trakt_id in movie_ids:
if cur_res >= max_res:
break
deets = get_deets_by_trakt_id(df, trakt_id)
if ((deets["year"]>=min_year) and (deets["year"]<=max_year)) and ((deets["runtime"]>=minRuntime) and (deets["runtime"]<=maxRuntime)):
results.append(deets)
cur_res += 1
return render_template("show_results.html",deets=results)
@app.route("/",methods=("GET","POST"))
def find_similar_title():
if request.method == "GET":
return render_template("index.html")
elif request.method == "POST":
to_search_title = request.form["title"]
code, values = title2trakt_id(to_search_title)
print(f"Code {code} for {to_search_title}")
if code == 0:
search_results = process.extract(to_search_title, movie_titles, scorer=fuzz.token_sort_ratio)
to_search_titles = []
to_search_ids = []
results = []
for search_result in search_results:
search_title, score = search_result
to_search_titles.append(search_title)
for to_search in to_search_titles:
code, values = title2trakt_id(to_search)
if code == 1:
to_search_ids.append(values)
else:
for trakt_id in values:
to_search_ids.append(trakt_id)
for trakt_id in to_search_ids:
deets = get_deets_by_trakt_id(df, int(trakt_id))
deets["trakt_id"] = trakt_id
results.append(deets)
return render_template("same_titles.html",deets=results)
elif code == 1:
vector = get_vector_value(values)
movie_queries = query_vectors(vector)
movie_ids = query2ids(movie_queries)
results = []
for trakt_id in movie_ids:
deets = get_deets_by_trakt_id(df, trakt_id)
results.append(deets)
return render_template("show_results.html",deets=results)
else:
results = []
for trakt_id in values:
deets = get_deets_by_trakt_id(df, int(trakt_id))
deets["trakt_id"] = trakt_id
results.append(deets)
return render_template("same_titles.html",deets=results)
|