1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
import itertools
import multiprocessing
from builtins import zip
from functools import partial
from numpy import asarray
class SubProcessError(Exception):
def __init__(self, e, exitcode=1):
self.exitcode = exitcode
super(SubProcessError, self).__init__(e)
pass
def universal_worker(input_pair):
"""This is a wrapper function expecting a tiplet of function, single
argument, dict of keyword arguments. The provided function is called
with the appropriate arguments."""
function, arg, kwargs = input_pair
return function(arg, **kwargs)
def pool_args(function, sequence, kwargs):
"""Return a single iterator of n elements of lists of length 3, given a sequence of len n."""
return zip(itertools.repeat(function), sequence, itertools.repeat(kwargs))
def parallel_fn(f):
"""Simple wrapper function, returning a parallel version of the given function f.
The function f must have one argument and may have an arbitray number of
keyword arguments. """
def simple_parallel(func, sequence, **args):
""" f takes an element of sequence as input and the keyword args in **args"""
if 'processes' in args:
processes = args.get('processes')
del args['processes']
else:
processes = multiprocessing.cpu_count()
pool = multiprocessing.Pool(processes) # depends on available cores
result = pool.map_async(universal_worker, pool_args(func, sequence, args))
pool.close()
pool.join()
cleaned = [x for x in result.get() if x is not None] # getting results
cleaned = asarray(cleaned)
return cleaned
return partial(simple_parallel, f)
|