1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import StreamingResponse
from io import BytesIO
import matplotlib.pyplot as plt
import matplotlib.font_manager as font_manager
from matplotlib.font_manager import FontProperties
import matplotlib as mpl
import numpy as np
import pandas as pd
from pydantic import BaseModel, Field
from sympy import symbols, sympify
font_path = 'times_new_roman.ttf'
times_new_roman = font_manager.FontProperties(fname=font_path, style='normal')
class PlotDataRequest(BaseModel):
x_data: list[float] = Field(..., title="X Data", description="Data Series for the X axis")
y_data: list[float] = Field(..., title="Y Data", description="Data Series for the Y axis")
std_dev_data: list[float] = Field([], title="Error Bars Data", description="Data Series for calculating error bars")
label: list[str] = Field("Dataseries", title="Label", description="Label for the data series")
color_picker: list[str] = Field(["#000000"], title="Color Picker", description="List of colors to use for the data series")
x_label: str = Field("X Axis", title="X Axis Label", description="Label for the X axis")
y_label: str = Field("Y Axis", title="Y Axis Label", description="Label for the Y axis")
title: str = Field("Plot", title="Title", description="Title of the plot")
enable_trendline: bool = Field(True, title="Enable Trendline", description="Enable trendline")
enable_grid: bool = Field(False, title="Enable Grid", description="Enable grid")
x_axis_scale: str = Field("linear", title="X Axis Scale", description="Scale of the X axis")
y_axis_scale: str = Field("linear", title="Y Axis Scale", description="Scale of the Y axis")
trendline_equation: str = Field(None, title="Trendline Equation", description="Manually specify the equation for the trendline")
special_mode: bool = Field(False, title="Special Mode", description="Special mode")
constant_line_vals: list[float] = Field([], title="Constant Line Values", description="List of values for the constant line")
constant_line_name: list[str] = Field([], title="Constant Line Names", description="List of names for the constant line")
app = FastAPI()
def plot_data(x_data, y_data, std_dev_data, color_picker, labels, df,
title = "Plot", x_label = "X Axis", y_label = "Y Axis",
plot_background_color="#ffffff", constant_line=[],
enable_trendline=True, enable_grid=False,
trendline_color="#000000", x_axis_scale="linear", y_axis_scale="linear", trendline_equation=None, special_mode=False):
fig, ax = plt.subplots(dpi=300)
special_mode_color = (38/255,56/255,97/255)
plots = []
for idx, _ in enumerate(x_data):
x = df[x_data[idx]].astype(float)
y = df[y_data[idx]].astype(float)
color = color_picker[idx]
data_series_title = labels[idx]
if special_mode:
if (std_dev_data[idx] != None):
plot = ax.errorbar(x, y, yerr=df[std_dev_data[idx]].astype(float), fmt='o', ecolor=special_mode_color, capsize=5, color=special_mode_color, label=data_series_title)
else:
plot = ax.plot(x, y, 'o', color=special_mode_color, label=data_series_title)
else:
if (std_dev_data[idx] != None):
plot = ax.errorbar(x, y, yerr=df[std_dev_data[idx]].astype(float), fmt='o', ecolor='black', capsize=5, color=color, label=data_series_title)
else:
plot = ax.plot(x, y, color=color, label=data_series_title)
if (type(plot) == list):
plots.extend(plot)
else:
plots.append(plot)
handles = plots
if trendline_equation == "":
trendline_equation = None
if enable_trendline:
if special_mode:
trendline_color = special_mode_color
if trendline_equation != None:
try:
x = symbols('x')
p = sympify(trendline_equation)
x_range = np.linspace(df[x_data[0]].astype(float).min(), df[x_data[0]].astype(float).max(), 100)
y_range = [p.subs(x, i) for i in x_range]
h, = ax.plot(x_range, y_range, linestyle="dotted", label="Trendline", color=trendline_color)
handles.append(h)
except:
print("Invalid Equation")
else:
x = df[x_data[0]].astype(float)
y = df[y_data[0]].astype(float)
z = np.polyfit(x, y, 2)
p = np.poly1d(z)
h, = ax.plot(x,p(x), linestyle="dotted", label="Trendline", color=trendline_color)
handles.append(h)
light_grey = 0.9
dar_grey = 0.4
for idx, line in enumerate(constant_line):
val, name = line
idx += 1
grey_shade = light_grey - (light_grey - dar_grey) * (idx / len(constant_line))
color = (grey_shade, grey_shade, grey_shade)
h = ax.axhline(y=val, linestyle='dashed', dashes=(idx+3,2) , color=color, label=name)
handles.append(h)
ax.grid(True,linestyle=(0,(1,5))) # enable_grid)
ax.set_facecolor(plot_background_color)
ax.set_xlabel(x_label, fontproperties=times_new_roman)
ax.set_ylabel(y_label, fontproperties=times_new_roman)
title = title.replace(' in ', '\nin ')
ax.set_title(title, wrap=True, fontproperties=times_new_roman)
for label in (ax.get_xticklabels() + ax.get_yticklabels()):
label.set_fontproperties(times_new_roman)
print(handles)
print(handles[0])
print(handles[0].get_label())
labels = [h.get_label() for h in handles]
ax.legend(handles, labels, loc='best', prop=times_new_roman)
if not special_mode:
fig.patch.set_facecolor(plot_background_color)
fig.tight_layout(pad=3.0)
#ax.invert_xaxis()
ax.set_xscale(x_axis_scale)
ax.set_yscale(y_axis_scale)
if special_mode:
# Hide title, x label, y label
ax.legend().set_visible(False)
ax.set_title("")
ax.set_xlabel("")
ax.set_ylabel("")
ax.spines[['right', 'top']].set_visible(False)
ax.tick_params(axis='x', length=0)
ax.tick_params(axis='y', length=0)
arial_font = FontProperties(fname='./arial.ttf')
mpl.font_manager.fontManager.addfont('./arial.ttf')
with mpl.rc_context({"font.family": arial_font.get_name(), "font.size": 9}):
ax.legend(handles, labels, loc='best')
# set axis tick labels to Arial:
for label in (ax.get_xticklabels() + ax.get_yticklabels()):
label.set_fontproperties(arial_font)
return fig
return fig
@app.post("/post")
async def create_plot(request: PlotDataRequest, data: Request):
print(data)
if len(request.x_data) != len(request.y_data):
raise HTTPException(status_code=400, detail="X and Y data must be the same length")
if len(request.constant_line_vals) != len(request.constant_line_name):
raise HTTPException(status_code=400, detail="Constant line values and names must be the same length")
constant_line = list(zip(request.constant_line_vals, request.constant_line_name))
# Create DF from request.x_data and request.y_data -> assign column header as x_data and y_data
df = pd.DataFrame(list(zip(request.x_data, request.y_data)), columns=["X", "Y"])
# if request.std_dev_data exists, add to df
if len(request.std_dev_data) > 0:
df["STD_DEV"] = request.std_dev_data
x_data = ["X"]
y_data = ["Y"]
if len(request.std_dev_data) > 0:
std_dev_data = ["STD_DEV"]
else:
std_dev_data = [None]
labels = request.label
fig = plot_data(x_data, y_data, std_dev_data, request.color_picker, labels, df,
title=request.title, x_label=request.x_label, y_label=request.y_label,
enable_trendline=request.enable_trendline, enable_grid=request.enable_grid,
constant_line=constant_line,
x_axis_scale=request.x_axis_scale, y_axis_scale=request.y_axis_scale, trendline_equation=request.trendline_equation,
special_mode=request.special_mode
)
buf = BytesIO()
fig.savefig(buf, format="png")
buf.seek(0)
return StreamingResponse(buf, media_type="image/png")
|