1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
//
// ImageUtils.swift
// iTexSnip
//
// Created by Navan Chauhan on 10/13/24.
//
import Foundation
import CoreImage
import AppKit
let IMAGE_MEAN: CGFloat = 0.9545467
let IMAGE_STD: CGFloat = 0.15394445
let FIXED_IMG_SIZE: CGFloat = 448
let IMG_CHANNELS: Int = 1
let MIN_HEIGHT: CGFloat = 12
let MIN_WIDTH: CGFloat = 30
// Load image from URL
func loadImage(from urlString: String) -> NSImage? {
guard let url = URL(string: urlString), let imageData = try? Data(contentsOf: url) else {
return nil
}
return NSImage(data: imageData)
}
// Helper to convert NSImage to CIImage
func nsImageToCIImage(_ image: NSImage) -> CIImage? {
guard let data = image.tiffRepresentation,
let bitmapImage = NSBitmapImageRep(data: data),
let cgImage = bitmapImage.cgImage else {
return nil
}
return CIImage(cgImage: cgImage)
}
func trimWhiteBorder(image: CIImage) -> CIImage? {
let context = CIContext()
// Render the CIImage to a CGImage for pixel analysis
guard let cgImage = context.createCGImage(image, from: image.extent) else {
return nil
}
// Access the pixel data
let width = cgImage.width
let height = cgImage.height
let colorSpace = CGColorSpaceCreateDeviceRGB()
let bytesPerPixel = 4
let bytesPerRow = bytesPerPixel * width
let bitmapInfo = CGImageAlphaInfo.premultipliedLast.rawValue
var pixelData = [UInt8](repeating: 0, count: height * bytesPerRow)
guard let contextRef = CGContext(
data: &pixelData,
width: width,
height: height,
bitsPerComponent: 8,
bytesPerRow: bytesPerRow,
space: colorSpace,
bitmapInfo: bitmapInfo
) else {
return nil
}
contextRef.draw(cgImage, in: CGRect(x: 0, y: 0, width: CGFloat(width), height: CGFloat(height)))
// Define the white color in RGBA
let whitePixel: [UInt8] = [255, 255, 255, 255]
var minX = width
var minY = height
var maxX: Int = 0
var maxY: Int = 0
// Scan the pixels to find the bounding box of non-white content
for y in 0..<height {
for x in 0..<width {
let pixelIndex = (y * bytesPerRow) + (x * bytesPerPixel)
let pixel = Array(pixelData[pixelIndex..<(pixelIndex + 4)])
if pixel != whitePixel {
if x < minX { minX = x }
if x > maxX { maxX = x }
if y < minY { minY = y }
if y > maxY { maxY = y }
}
}
}
// If no non-white content was found, return the original image
if minX == width || minY == height || maxX == 0 || maxY == 0 {
return image
}
// Compute the bounding box and crop the image
let croppedRect = CGRect(x: CGFloat(minX), y: CGFloat(minY), width: CGFloat(maxX - minX), height: CGFloat(maxY - minY))
return image.cropped(to: croppedRect)
}
// Padding image with white border
func addWhiteBorder(to image: CIImage, maxSize: CGFloat) -> CIImage {
let randomPadding = (0..<4).map { _ in CGFloat(arc4random_uniform(UInt32(maxSize))) }
var xPadding = randomPadding[0] + randomPadding[2]
var yPadding = randomPadding[1] + randomPadding[3]
// Ensure the minimum width and height
if xPadding + image.extent.width < MIN_WIDTH {
let compensateWidth = (MIN_WIDTH - (xPadding + image.extent.width)) * 0.5 + 1
xPadding += compensateWidth
}
if yPadding + image.extent.height < MIN_HEIGHT {
let compensateHeight = (MIN_HEIGHT - (yPadding + image.extent.height)) * 0.5 + 1
yPadding += compensateHeight
}
// Adding padding with a constant white color
let padFilter = CIFilter(name: "CICrop")!
let paddedRect = CGRect(x: image.extent.origin.x - randomPadding[0],
y: image.extent.origin.y - randomPadding[1],
width: image.extent.width + xPadding,
height: image.extent.height + yPadding)
padFilter.setValue(image, forKey: kCIInputImageKey)
padFilter.setValue(CIVector(cgRect: paddedRect), forKey: "inputRectangle")
return padFilter.outputImage ?? image
}
// Padding images to a required size
func padding(images: [CIImage], requiredSize: CGFloat) -> [CIImage] {
return images.map { image in
let widthPadding = requiredSize - image.extent.width
let heightPadding = requiredSize - image.extent.height
return addWhiteBorder(to: image, maxSize: max(widthPadding, heightPadding))
}
}
// Transform pipeline to apply resize, normalize, etc.
func inferenceTransform(images: [NSImage]) -> [CIImage] {
let ciImages = images.compactMap { nsImageToCIImage($0) }
let trimmedImages = ciImages.compactMap { trimWhiteBorder(image: $0) }
let paddedImages = padding(images: trimmedImages, requiredSize: FIXED_IMG_SIZE)
return paddedImages
}
func ciImageToFloatArray(_ image: CIImage, size: CGSize) -> [Float] {
// Render the CIImage to a bitmap context
let context = CIContext()
guard let cgImage = context.createCGImage(image, from: image.extent) else {
return []
}
let width = Int(size.width)
let height = Int(size.height)
var pixelData = [UInt8](repeating: 0, count: width * height) // Use UInt8 for grayscale
// Create bitmap context for rendering
let colorSpace = CGColorSpaceCreateDeviceGray()
guard let contextRef = CGContext(
data: &pixelData,
width: width,
height: height,
bitsPerComponent: 8,
bytesPerRow: width,
space: colorSpace,
bitmapInfo: CGImageAlphaInfo.none.rawValue
) else {
return []
}
contextRef.draw(cgImage, in: CGRect(x: 0, y: 0, width: CGFloat(width), height: CGFloat(height)))
// Normalize pixel values to [0, 1]
return pixelData.map { Float($0) / 255.0 }
}
|