summaryrefslogtreecommitdiff
path: root/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html
diff options
context:
space:
mode:
authorNavan Chauhan <navanchauhan@gmail.com>2024-03-26 18:21:29 -0600
committerNavan Chauhan <navanchauhan@gmail.com>2024-03-26 18:21:29 -0600
commitaae00025bd8bff04de90b22b2472aed8a232f476 (patch)
tree42dcca0448ac2e87e028b4890942977e31dc5d9f /docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html
parent37661080a111768e565ae53299c4796ebe711a71 (diff)
post testing latex extra
Diffstat (limited to 'docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html')
-rw-r--r--docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html10
1 files changed, 3 insertions, 7 deletions
diff --git a/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html b/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html
index 7a25daf..ab46ec7 100644
--- a/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html
+++ b/docs/posts/2024-03-21-Polynomial-Regression-in-TensorFlow-2.html
@@ -107,9 +107,7 @@
<script src="https://cdn.jsdelivr.net/npm/mathjax@4.0.0-beta.4/input/tex/extensions/noerrors.js" charset="UTF-8"></script>
-<p>$$
-y = ax^3 + bx^2 + cx + d
-$$</p>
+<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mi>y</mi><mo>&#x0003D;</mo><mi>a</mi><msup><mi>x</mi><mn>3</mn></msup><mo>&#x0002B;</mo><mi>b</mi><msup><mi>x</mi><mn>2</mn></msup><mo>&#x0002B;</mo><mi>c</mi><mi>x</mi><mo>&#x0002B;</mo><mi>d</mi></mrow></math>
<h3>Optimizer Selection &amp; Training</h3>
@@ -134,9 +132,7 @@ $$</p>
<p>Our loss function is Mean Squared Error (MSE):</p>
-<p>$$
-= \frac{1}{n} \sum_{i=1}^{n}{(Y_i - \hat{Y_i})^2}
-$$</p>
+<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mo>&#x0003D;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><msubsup><mo>&#x02211;</mo><mrow><mi>i</mi><mo>&#x0003D;</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo stretchy="false">&#x00028;</mo><mi>Y</mi><mi>&#x0005F;</mi><mi>i</mi><mo>&#x02212;</mo><mover><mrow><mi>Y</mi><mi>&#x0005F;</mi><mi>i</mi></mrow><mo stretchy="false">&#x0005E;</mo></mover><msup><mo stretchy="false">&#x00029;</mo><mn>2</mn></msup></mrow></mrow></math>
<p>Where <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>Y</mi><mi>i</mi></msub><mo stretchy="false" style="math-style:normal;math-depth:0;">^</mo></mover></math> is the predicted value and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Y</mi><mi>i</mi></msub></math> is the actual value</p>
@@ -276,7 +272,7 @@ $$</p>
<p>How would you modify this code to use another type of nonlinear regression? Say, </p>
-<p>$$ y = ab^x $$</p>
+<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mi>y</mi><mo>&#x0003D;</mo><mi>a</mi><msup><mi>b</mi><mi>x</mi></msup></mrow></math>
<p>Hint: Your loss calculation would be similar to:</p>