summaryrefslogtreecommitdiff
path: root/posts/2019-12-08-Image-Classifier-Tensorflow/index.html
diff options
context:
space:
mode:
Diffstat (limited to 'posts/2019-12-08-Image-Classifier-Tensorflow/index.html')
-rw-r--r--posts/2019-12-08-Image-Classifier-Tensorflow/index.html214
1 files changed, 118 insertions, 96 deletions
diff --git a/posts/2019-12-08-Image-Classifier-Tensorflow/index.html b/posts/2019-12-08-Image-Classifier-Tensorflow/index.html
index a98de67..c835a5e 100644
--- a/posts/2019-12-08-Image-Classifier-Tensorflow/index.html
+++ b/posts/2019-12-08-Image-Classifier-Tensorflow/index.html
@@ -1,101 +1,123 @@
-<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"/><meta name="og:site_name" content="Navan Chauhan"/><link rel="canonical" href="https://navanchauhan.github.io/posts/2019-12-08-Image-Classifier-Tensorflow"/><meta name="twitter:url" content="https://navanchauhan.github.io/posts/2019-12-08-Image-Classifier-Tensorflow"/><meta name="og:url" content="https://navanchauhan.github.io/posts/2019-12-08-Image-Classifier-Tensorflow"/><title>Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria | Navan Chauhan</title><meta name="twitter:title" content="Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria | Navan Chauhan"/><meta name="og:title" content="Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria | Navan Chauhan"/><meta name="description" content="Tutorial on creating an image classifier model using TensorFlow which detects malaria"/><meta name="twitter:description" content="Tutorial on creating an image classifier model using TensorFlow which detects malaria"/><meta name="og:description" content="Tutorial on creating an image classifier model using TensorFlow which detects malaria"/><meta name="twitter:card" content="summary"/><link rel="stylesheet" href="/styles.css" type="text/css"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><link rel="shortcut icon" href="/images/favicon.png" type="image/png"/><link rel="alternate" href="/feed.rss" type="application/rss+xml" title="Subscribe to Navan Chauhan"/><meta name="twitter:image" content="https://navanchauhan.github.io/images/logo.png"/><meta name="og:image" content="https://navanchauhan.github.io/images/logo.png"/></head><head><script src="https://www.googletagmanager.com/gtag/js?id=UA-108635191-1v"></script><script>window.dataLayer = window.dataLayer || [];function gtag(){dataLayer.push(arguments);}gtag('js', new Date());gtag('config', 'UA-108635191-1');</script></head><body class="item-page"><header><div class="wrapper"><a class="site-name" href="/">Navan Chauhan</a><nav><ul><li><a class="selected" href="/posts">Posts</a></li><li><a href="/publications">Publications</a></li><li><a href="/about">About Me</a></li><li><a href="https://navanchauhan.github.io/repo">Repo</a></li></ul></nav></div></header><div class="wrapper"><article><div class="content"><span class="reading-time">🕑 3 minute read.</span><h1>Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria</h1><p><strong>Done during Google Code-In. Org: Tensorflow.</strong></p><h2>Imports</h2><pre><code>%tensorflow_version 2.x #This is for telling Colab that you want to use TF 2.0, ignore if running on local machine
+<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"/><meta name="og:site_name" content="Navan Chauhan"/><link rel="canonical" href="https://navanchauhan.github.io/posts/2019-12-08-Image-Classifier-Tensorflow"/><meta name="twitter:url" content="https://navanchauhan.github.io/posts/2019-12-08-Image-Classifier-Tensorflow"/><meta name="og:url" content="https://navanchauhan.github.io/posts/2019-12-08-Image-Classifier-Tensorflow"/><title>Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria | Navan Chauhan</title><meta name="twitter:title" content="Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria | Navan Chauhan"/><meta name="og:title" content="Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria | Navan Chauhan"/><meta name="description" content="Tutorial on creating an image classifier model using TensorFlow which detects malaria"/><meta name="twitter:description" content="Tutorial on creating an image classifier model using TensorFlow which detects malaria"/><meta name="og:description" content="Tutorial on creating an image classifier model using TensorFlow which detects malaria"/><meta name="twitter:card" content="summary"/><link rel="stylesheet" href="/styles.css" type="text/css"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><link rel="shortcut icon" href="/images/favicon.png" type="image/png"/><link rel="alternate" href="/feed.rss" type="application/rss+xml" title="Subscribe to Navan Chauhan"/><meta name="twitter:image" content="https://navanchauhan.github.io/images/logo.png"/><meta name="og:image" content="https://navanchauhan.github.io/images/logo.png"/></head><head><script src="https://www.googletagmanager.com/gtag/js?id=UA-108635191-1v"></script><script>window.dataLayer = window.dataLayer || [];function gtag(){dataLayer.push(arguments);}gtag('js', new Date());gtag('config', 'UA-108635191-1');</script></head><body class="item-page"><header><div class="wrapper"><a class="site-name" href="/">Navan Chauhan</a><nav><ul><li><a class="selected" href="/posts">Posts</a></li><li><a href="/publications">Publications</a></li><li><a href="/about">About Me</a></li><li><a href="https://navanchauhan.github.io/repo">Repo</a></li></ul></nav></div></header><div class="wrapper"><article><div class="content"><span class="reading-time">🕑 4 minute read.</span><h1>Creating a Custom Image Classifier using Tensorflow 2.x and Keras for Detecting Malaria</h1><p><strong>Done during Google Code-In. Org: Tensorflow.</strong></p><h2>Imports</h2><pre><code><div class="highlight"><span></span><span class="o">%</span><span class="n">tensorflow_version</span> <span class="mf">2.</span><span class="n">x</span> <span class="c1">#This is for telling Colab that you want to use TF 2.0, ignore if running on local machine</span>
-from PIL import Image # We use the PIL Library to resize images
-import numpy as np
-import os
-import cv2
-import tensorflow as tf
-from tensorflow.keras import datasets, layers, models
-import pandas as pd
-import matplotlib.pyplot as plt
-from keras.models import Sequential
-from keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout
-</code></pre><h2>Dataset</h2><h3>Fetching the Data</h3><pre><code>!wget ftp://lhcftp.nlm.nih.gov/Open-Access-Datasets/Malaria/cell_images.zip
-!unzip cell_images.zip
-</code></pre><h3>Processing the Data</h3><p>We resize all the images as 50x50 and add the numpy array of that image as well as their label names (Infected or Not) to common arrays.</p><pre><code>data = []
-labels = []
+<span class="kn">from</span> <span class="nn">PIL</span> <span class="kn">import</span> <span class="n">Image</span> <span class="c1"># We use the PIL Library to resize images</span>
+<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
+<span class="kn">import</span> <span class="nn">os</span>
+<span class="kn">import</span> <span class="nn">cv2</span>
+<span class="kn">import</span> <span class="nn">tensorflow</span> <span class="kn">as</span> <span class="nn">tf</span>
+<span class="kn">from</span> <span class="nn">tensorflow.keras</span> <span class="kn">import</span> <span class="n">datasets</span><span class="p">,</span> <span class="n">layers</span><span class="p">,</span> <span class="n">models</span>
+<span class="kn">import</span> <span class="nn">pandas</span> <span class="kn">as</span> <span class="nn">pd</span>
+<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
+<span class="kn">from</span> <span class="nn">keras.models</span> <span class="kn">import</span> <span class="n">Sequential</span>
+<span class="kn">from</span> <span class="nn">keras.layers</span> <span class="kn">import</span> <span class="n">Conv2D</span><span class="p">,</span><span class="n">MaxPooling2D</span><span class="p">,</span><span class="n">Dense</span><span class="p">,</span><span class="n">Flatten</span><span class="p">,</span><span class="n">Dropout</span>
+</div>
-Parasitized = os.listdir("./cell_images/Parasitized/")
-for parasite in Parasitized:
- try:
- image=cv2.imread("./cell_images/Parasitized/"+parasite)
- image_from_array = Image.fromarray(image, 'RGB')
- size_image = image_from_array.resize((50, 50))
- data.append(np.array(size_image))
- labels.append(0)
- except AttributeError:
- print("")
+</code></pre><h2>Dataset</h2><h3>Fetching the Data</h3><pre><code><div class="highlight"><span></span><span class="err">!</span><span class="n">wget</span> <span class="n">ftp</span><span class="p">:</span><span class="o">//</span><span class="n">lhcftp</span><span class="o">.</span><span class="n">nlm</span><span class="o">.</span><span class="n">nih</span><span class="o">.</span><span class="n">gov</span><span class="o">/</span><span class="n">Open</span><span class="o">-</span><span class="n">Access</span><span class="o">-</span><span class="n">Datasets</span><span class="o">/</span><span class="n">Malaria</span><span class="o">/</span><span class="n">cell_images</span><span class="o">.</span><span class="n">zip</span>
+<span class="err">!</span><span class="n">unzip</span> <span class="n">cell_images</span><span class="o">.</span><span class="n">zip</span>
+</div>
-Uninfected = os.listdir("./cell_images/Uninfected/")
-for uninfect in Uninfected:
- try:
- image=cv2.imread("./cell_images/Uninfected/"+uninfect)
- image_from_array = Image.fromarray(image, 'RGB')
- size_image = image_from_array.resize((50, 50))
- data.append(np.array(size_image))
- labels.append(1)
- except AttributeError:
- print("")
-</code></pre><h3>Splitting Data</h3><pre><code>df = np.array(data)
-labels = np.array(labels)
-(X_train, X_test) = df[(int)(0.1*len(df)):],df[:(int)(0.1*len(df))]
-(y_train, y_test) = labels[(int)(0.1*len(labels)):],labels[:(int)(0.1*len(labels))]
-</code></pre><pre><code>s=np.arange(X_train.shape[0])
-np.random.shuffle(s)
-X_train=X_train[s]
-y_train=y_train[s]
-X_train = X_train/255.0
-</code></pre><h2>Model</h2><h3>Creating Model</h3><p>By creating a sequential model, we create a linear stack of layers.</p><p><em>Note: The input shape for the first layer is 50,50 which corresponds with the sizes of the resized images</em></p><pre><code>model = models.Sequential()
-model.add(layers.Conv2D(filters=16, kernel_size=2, padding='same', activation='relu', input_shape=(50,50,3)))
-model.add(layers.MaxPooling2D(pool_size=2))
-model.add(layers.Conv2D(filters=32,kernel_size=2,padding='same',activation='relu'))
-model.add(layers.MaxPooling2D(pool_size=2))
-model.add(layers.Conv2D(filters=64,kernel_size=2,padding="same",activation="relu"))
-model.add(layers.MaxPooling2D(pool_size=2))
-model.add(layers.Dropout(0.2))
-model.add(layers.Flatten())
-model.add(layers.Dense(500,activation="relu"))
-model.add(layers.Dropout(0.2))
-model.add(layers.Dense(2,activation="softmax"))#2 represent output layer neurons
-model.summary()
-</code></pre><h3>Compiling Model</h3><p>We use the adam optimiser as it is an adaptive learning rate optimization algorithm that's been designed specifically for <em>training</em> deep neural networks, which means it changes its learning rate automaticaly to get the best results</p><pre><code>model.compile(optimizer="adam",
- loss="sparse_categorical_crossentropy",
- metrics=["accuracy"])
-</code></pre><h3>Training Model</h3><p>We train the model for 10 epochs on the training data and then validate it using the testing data</p><pre><code>history = model.fit(X_train,y_train, epochs=10, validation_data=(X_test,y_test))
-</code></pre><pre><code>Train on 24803 samples, validate on 2755 samples
-Epoch 1/10
-24803/24803 [==============================] - 57s 2ms/sample - loss: 0.0786 - accuracy: 0.9729 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
-Epoch 2/10
-24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0746 - accuracy: 0.9731 - val_loss: 0.0290 - val_accuracy: 0.9996
-Epoch 3/10
-24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0672 - accuracy: 0.9764 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
-Epoch 4/10
-24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0601 - accuracy: 0.9789 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
-Epoch 5/10
-24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0558 - accuracy: 0.9804 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
-Epoch 6/10
-24803/24803 [==============================] - 57s 2ms/sample - loss: 0.0513 - accuracy: 0.9819 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
-Epoch 7/10
-24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0452 - accuracy: 0.9849 - val_loss: 0.3190 - val_accuracy: 0.9985
-Epoch 8/10
-24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0404 - accuracy: 0.9858 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
-Epoch 9/10
-24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0352 - accuracy: 0.9878 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
-Epoch 10/10
-24803/24803 [==============================] - 58s 2ms/sample - loss: 0.0373 - accuracy: 0.9865 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
-</code></pre><h3>Results</h3><pre><code>accuracy = history.history['accuracy'][-1]*100
-loss = history.history['loss'][-1]*100
-val_accuracy = history.history['val_accuracy'][-1]*100
-val_loss = history.history['val_loss'][-1]*100
+</code></pre><h3>Processing the Data</h3><p>We resize all the images as 50x50 and add the numpy array of that image as well as their label names (Infected or Not) to common arrays.</p><pre><code><div class="highlight"><span></span><span class="n">data</span> <span class="o">=</span> <span class="p">[]</span>
+<span class="n">labels</span> <span class="o">=</span> <span class="p">[]</span>
+
+<span class="n">Parasitized</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">listdir</span><span class="p">(</span><span class="s2">&quot;./cell_images/Parasitized/&quot;</span><span class="p">)</span>
+<span class="k">for</span> <span class="n">parasite</span> <span class="ow">in</span> <span class="n">Parasitized</span><span class="p">:</span>
+ <span class="k">try</span><span class="p">:</span>
+ <span class="n">image</span><span class="o">=</span><span class="n">cv2</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="s2">&quot;./cell_images/Parasitized/&quot;</span><span class="o">+</span><span class="n">parasite</span><span class="p">)</span>
+ <span class="n">image_from_array</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">fromarray</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="s1">&#39;RGB&#39;</span><span class="p">)</span>
+ <span class="n">size_image</span> <span class="o">=</span> <span class="n">image_from_array</span><span class="o">.</span><span class="n">resize</span><span class="p">((</span><span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">))</span>
+ <span class="n">data</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">size_image</span><span class="p">))</span>
+ <span class="n">labels</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
+ <span class="k">except</span> <span class="ne">AttributeError</span><span class="p">:</span>
+ <span class="k">print</span><span class="p">(</span><span class="s2">&quot;&quot;</span><span class="p">)</span>
+
+<span class="n">Uninfected</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">listdir</span><span class="p">(</span><span class="s2">&quot;./cell_images/Uninfected/&quot;</span><span class="p">)</span>
+<span class="k">for</span> <span class="n">uninfect</span> <span class="ow">in</span> <span class="n">Uninfected</span><span class="p">:</span>
+ <span class="k">try</span><span class="p">:</span>
+ <span class="n">image</span><span class="o">=</span><span class="n">cv2</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="s2">&quot;./cell_images/Uninfected/&quot;</span><span class="o">+</span><span class="n">uninfect</span><span class="p">)</span>
+ <span class="n">image_from_array</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">fromarray</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="s1">&#39;RGB&#39;</span><span class="p">)</span>
+ <span class="n">size_image</span> <span class="o">=</span> <span class="n">image_from_array</span><span class="o">.</span><span class="n">resize</span><span class="p">((</span><span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">))</span>
+ <span class="n">data</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">size_image</span><span class="p">))</span>
+ <span class="n">labels</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
+ <span class="k">except</span> <span class="ne">AttributeError</span><span class="p">:</span>
+ <span class="k">print</span><span class="p">(</span><span class="s2">&quot;&quot;</span><span class="p">)</span>
+</div>
+
+</code></pre><h3>Splitting Data</h3><pre><code><div class="highlight"><span></span><span class="n">df</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
+<span class="n">labels</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">labels</span><span class="p">)</span>
+<span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">)</span> <span class="o">=</span> <span class="n">df</span><span class="p">[(</span><span class="nb">int</span><span class="p">)(</span><span class="mf">0.1</span><span class="o">*</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">)):],</span><span class="n">df</span><span class="p">[:(</span><span class="nb">int</span><span class="p">)(</span><span class="mf">0.1</span><span class="o">*</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">))]</span>
+<span class="p">(</span><span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span><span class="p">)</span> <span class="o">=</span> <span class="n">labels</span><span class="p">[(</span><span class="nb">int</span><span class="p">)(</span><span class="mf">0.1</span><span class="o">*</span><span class="nb">len</span><span class="p">(</span><span class="n">labels</span><span class="p">)):],</span><span class="n">labels</span><span class="p">[:(</span><span class="nb">int</span><span class="p">)(</span><span class="mf">0.1</span><span class="o">*</span><span class="nb">len</span><span class="p">(</span><span class="n">labels</span><span class="p">))]</span>
+</div>
+
+</code></pre><pre><code><div class="highlight"><span></span><span class="n">s</span><span class="p">=</span><span class="n">np</span><span class="p">.</span><span class="n">arange</span><span class="p">(</span><span class="n">X_train</span><span class="p">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
+<span class="n">np</span><span class="p">.</span><span class="n">random</span><span class="p">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
+<span class="n">X_train</span><span class="p">=</span><span class="n">X_train</span><span class="p">[</span><span class="n">s</span><span class="p">]</span>
+<span class="n">y_train</span><span class="p">=</span><span class="n">y_train</span><span class="p">[</span><span class="n">s</span><span class="p">]</span>
+<span class="n">X_train</span> <span class="p">=</span> <span class="n">X_train</span><span class="o">/</span><span class="mf">255.0</span>
+</div>
+
+</code></pre><h2>Model</h2><h3>Creating Model</h3><p>By creating a sequential model, we create a linear stack of layers.</p><p><em>Note: The input shape for the first layer is 50,50 which corresponds with the sizes of the resized images</em></p><pre><code><div class="highlight"><span></span><span class="n">model</span> <span class="o">=</span> <span class="n">models</span><span class="o">.</span><span class="n">Sequential</span><span class="p">()</span>
+<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Conv2D</span><span class="p">(</span><span class="n">filters</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="s1">&#39;same&#39;</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s1">&#39;relu&#39;</span><span class="p">,</span> <span class="n">input_shape</span><span class="o">=</span><span class="p">(</span><span class="mi">50</span><span class="p">,</span><span class="mi">50</span><span class="p">,</span><span class="mi">3</span><span class="p">)))</span>
+<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">MaxPooling2D</span><span class="p">(</span><span class="n">pool_size</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span>
+<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Conv2D</span><span class="p">(</span><span class="n">filters</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span><span class="n">padding</span><span class="o">=</span><span class="s1">&#39;same&#39;</span><span class="p">,</span><span class="n">activation</span><span class="o">=</span><span class="s1">&#39;relu&#39;</span><span class="p">))</span>
+<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">MaxPooling2D</span><span class="p">(</span><span class="n">pool_size</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span>
+<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Conv2D</span><span class="p">(</span><span class="n">filters</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span><span class="n">padding</span><span class="o">=</span><span class="s2">&quot;same&quot;</span><span class="p">,</span><span class="n">activation</span><span class="o">=</span><span class="s2">&quot;relu&quot;</span><span class="p">))</span>
+<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">MaxPooling2D</span><span class="p">(</span><span class="n">pool_size</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span>
+<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="mf">0.2</span><span class="p">))</span>
+<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Flatten</span><span class="p">())</span>
+<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">500</span><span class="p">,</span><span class="n">activation</span><span class="o">=</span><span class="s2">&quot;relu&quot;</span><span class="p">))</span>
+<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="mf">0.2</span><span class="p">))</span>
+<span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="n">activation</span><span class="o">=</span><span class="s2">&quot;softmax&quot;</span><span class="p">))</span><span class="c1">#2 represent output layer neurons </span>
+<span class="n">model</span><span class="o">.</span><span class="n">summary</span><span class="p">()</span>
+</div>
+
+</code></pre><h3>Compiling Model</h3><p>We use the adam optimiser as it is an adaptive learning rate optimization algorithm that's been designed specifically for <em>training</em> deep neural networks, which means it changes its learning rate automaticaly to get the best results</p><pre><code><div class="highlight"><span></span><span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">optimizer</span><span class="o">=</span><span class="s2">&quot;adam&quot;</span><span class="p">,</span>
+ <span class="n">loss</span><span class="o">=</span><span class="s2">&quot;sparse_categorical_crossentropy&quot;</span><span class="p">,</span>
+ <span class="n">metrics</span><span class="o">=</span><span class="p">[</span><span class="s2">&quot;accuracy&quot;</span><span class="p">])</span>
+</div>
+
+</code></pre><h3>Training Model</h3><p>We train the model for 10 epochs on the training data and then validate it using the testing data</p><pre><code><div class="highlight"><span></span><span class="n">history</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">y_train</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">validation_data</span><span class="o">=</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span><span class="n">y_test</span><span class="p">))</span>
+</div>
+
+</code></pre><pre><code><div class="highlight"><span></span><span class="n">Train</span> <span class="n">on</span> <span class="mi">24803</span> <span class="n">samples</span><span class="p">,</span> <span class="n">validate</span> <span class="n">on</span> <span class="mi">2755</span> <span class="n">samples</span>
+<span class="n">Epoch</span> <span class="mi">1</span><span class="o">/</span><span class="mi">10</span>
+<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">57</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0786</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9729</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
+<span class="n">Epoch</span> <span class="mi">2</span><span class="o">/</span><span class="mi">10</span>
+<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0746</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9731</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0290</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">0.9996</span>
+<span class="n">Epoch</span> <span class="mi">3</span><span class="o">/</span><span class="mi">10</span>
+<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0672</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9764</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
+<span class="n">Epoch</span> <span class="mi">4</span><span class="o">/</span><span class="mi">10</span>
+<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0601</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9789</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
+<span class="n">Epoch</span> <span class="mi">5</span><span class="o">/</span><span class="mi">10</span>
+<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0558</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9804</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
+<span class="n">Epoch</span> <span class="mi">6</span><span class="o">/</span><span class="mi">10</span>
+<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">57</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0513</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9819</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
+<span class="n">Epoch</span> <span class="mi">7</span><span class="o">/</span><span class="mi">10</span>
+<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0452</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9849</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.3190</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">0.9985</span>
+<span class="n">Epoch</span> <span class="mi">8</span><span class="o">/</span><span class="mi">10</span>
+<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0404</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9858</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
+<span class="n">Epoch</span> <span class="mi">9</span><span class="o">/</span><span class="mi">10</span>
+<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0352</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9878</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
+<span class="n">Epoch</span> <span class="mi">10</span><span class="o">/</span><span class="mi">10</span>
+<span class="mi">24803</span><span class="o">/</span><span class="mi">24803</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">58</span><span class="n">s</span> <span class="mi">2</span><span class="n">ms</span><span class="o">/</span><span class="n">sample</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mf">0.0373</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.9865</span> <span class="o">-</span> <span class="n">val_loss</span><span class="p">:</span> <span class="mf">0.0000e+00</span> <span class="o">-</span> <span class="n">val_accuracy</span><span class="p">:</span> <span class="mf">1.0000</span>
+</div>
+
+</code></pre><h3>Results</h3><pre><code><div class="highlight"><span></span><span class="n">accuracy</span> <span class="o">=</span> <span class="n">history</span><span class="o">.</span><span class="n">history</span><span class="p">[</span><span class="s1">&#39;accuracy&#39;</span><span class="p">][</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="mi">100</span>
+<span class="n">loss</span> <span class="o">=</span> <span class="n">history</span><span class="o">.</span><span class="n">history</span><span class="p">[</span><span class="s1">&#39;loss&#39;</span><span class="p">][</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="mi">100</span>
+<span class="n">val_accuracy</span> <span class="o">=</span> <span class="n">history</span><span class="o">.</span><span class="n">history</span><span class="p">[</span><span class="s1">&#39;val_accuracy&#39;</span><span class="p">][</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="mi">100</span>
+<span class="n">val_loss</span> <span class="o">=</span> <span class="n">history</span><span class="o">.</span><span class="n">history</span><span class="p">[</span><span class="s1">&#39;val_loss&#39;</span><span class="p">][</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="mi">100</span>
+
+<span class="k">print</span><span class="p">(</span>
+ <span class="s1">&#39;Accuracy:&#39;</span><span class="p">,</span> <span class="n">accuracy</span><span class="p">,</span>
+ <span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Loss:&#39;</span><span class="p">,</span> <span class="n">loss</span><span class="p">,</span>
+ <span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Validation Accuracy:&#39;</span><span class="p">,</span> <span class="n">val_accuracy</span><span class="p">,</span>
+ <span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Validation Loss:&#39;</span><span class="p">,</span> <span class="n">val_loss</span>
+<span class="p">)</span>
+</div>
+
+</code></pre><pre><code><div class="highlight"><span></span><span class="n">Accuracy</span><span class="p">:</span> <span class="mf">98.64532351493835</span>
+<span class="n">Loss</span><span class="p">:</span> <span class="mf">3.732407123270176</span>
+<span class="n">Validation</span> <span class="n">Accuracy</span><span class="p">:</span> <span class="mf">100.0</span>
+<span class="n">Validation</span> <span class="n">Loss</span><span class="p">:</span> <span class="mf">0.0</span>
+</div>
-print(
- 'Accuracy:', accuracy,
- '\nLoss:', loss,
- '\nValidation Accuracy:', val_accuracy,
- '\nValidation Loss:', val_loss
-)
-</code></pre><pre><code>Accuracy: 98.64532351493835
-Loss: 3.732407123270176
-Validation Accuracy: 100.0
-Validation Loss: 0.0
</code></pre><p>We have achieved 98% Accuracy!</p><p><a href="https://colab.research.google.com/drive/1ZswDsxLwYZEnev89MzlL5Lwt6ut7iwp- "Colab Notebook"">Link to Colab Notebook</a></p></div><span>Tagged with: </span><ul class="tag-list"><li><a href="/tags/tutorial">tutorial</a></li><li><a href="/tags/tensorflow">tensorflow</a></li><li><a href="/tags/colab">colab</a></li></ul></article></div><footer><p>Made with ❤️ using <a href="https://github.com/johnsundell/publish">Publish</a></p><p><a href="/feed.rss">RSS feed</a></p></footer></body></html> \ No newline at end of file